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CHAPTER I

Introduct ion

Since the turn of this century, transient flow behavior in closed

conduits has been recognized as a necessary part of making accurate flow

predictions in fluid systems. In response to application requirements

in the past, the technological development of this subject area has been

generally concerned with theory and techniques needed to predict flow

behavior in product pipelines and potential lines associated with hydro-

electric plants.

In the past few years, serious transient flow problems have been

encountered in sophisticated fluid systems on aircraft and missiles that

make pipeline flow predictions seem elementary. It is apparent from an

appraisal of the current "state of the art" in this field and the require-

ments imposed by modern systems, that new theories and techniques must

be developed. It has been discovered that methods used in the past

severely limit the accuracy of predicting peak pressures and attenuation

characteristics in current systems. Furthermore, the acceleration forces

externally imposed on the entire fluid system and the obvious need to

marginally design the system due to space and weight considerations

necessitate a more complex theory.

The name "conduit dynamics " has been given to the area of study

involving a closed conduit system, its fluid, and all associated forces.

Only "token" interest has been generated in this relatively new field



to date as evidenced by the published literature. However, recent

articles indicate that interest is growing amongsystems engineering

people who possess an appreciation for the analysis of high performance

systems.

This project has been concerned with the development of applicable

theory and techniques for predicting transient flow behavior in single

phase fluid systems. In addition, the properties and flow character-

istics of cryogenic fluids which influence analytical simulation studies

are being investigated. The research associated with this project has

been relegated to two research teams. The first team is charged with

the development of appropriate theory and techniques for establishing

a conduit model. The second team has undertaken the investigation of

cryogenic properties and flow characteristics. This report purports

the project activities and efforts for the first year of the study.

Scope of Work

The original scope of work for this study may be broken down

into four phases as follows:

A. Complete a comprehensive review of past literature.

B. Develop a mathematical model which describes the transients

in fluid conduits and shows the effects of fluid inertance,

fluid capacitance, and fluid resistance. Develop an analog

model based on the mathematical model which will simulate

the fluid transients in a cryogenic closed conduit.

Co Conduct an experimental study to verify the conduit simu-

lation models° Make necessary modifications in the models

to achieve appropriate agreement with laboratory data°
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D° Study the effects of components, derive their associated

transfer functions, and add this input to paragraph C

above to obtain the effects of added components.

Summary of Accomplishments

The work which has been done to date toward the successful

completion of the work objective as indicated in the scope may

be summarized as follows:

A. An exhaustive survey of previous investigations has been

completed for both the single-phase and two-phase areas

of the study.

B. A detailed transfer function model for a viscous, two-

dimensional, single-phase conduit has been derived and

appears to be capable of extension to cover preliminary

two-phase and cavitation studies. This model has been

experimentally verified for the single-phase case.

C. A conduit model showing the effects of body forces and

system vibration was derived.

D. An investigation of the nonlinear effects associated with

conduit dynamics has been made using a linearized second-

order equation of motion.

E. The design of a hydrodynamic tunnel capable of handling

liquid nitrogen has been completed and construction is

underway.

F. A theoretical investigation of the onset of cavitation

has been started; however, the necessary boundary conditions

must be determined experimentally.



G. A bubble observation chamber, suitable for studies with

liquid nitrogen, has been designed and constructed.

H. An experimental investigation of the effect of an orifice

in a fluid conduit has been carried out.

The following chapters of this report give a detailed account of

this work.

Recommendations for Future Investigations

Although the work which will be accomplished in this first year

of study represents a significant contribution in the field of conduit

dynamics, we feel that, due to the experience and knowledge gained

during this period, we will be at a stage where we can undertake more

specific and practical problems of interest to NASA. Areas which

it is felt deserve further study and will be rewarding to the space

program include:

A. Study the formation and behavior of bubbles in conduit

systems subject to vibrations.

Bo Extend the concepts of the present conduit models to

incorporate turbulence, bubbles and cavitation effects.

C. Continue the analytical and experimental investigation

of the significance of the nonlinear effects in conduits

and their components°

Do Investigate the effects of transient pressures on the

cavitation properties of liquids in a static state° A

comparison should be made with the results obtained from

the hydrodynamic tunnel for the same liquid flowing through

the same pressure transients.
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CHAPTER II

Review of the Literature for Single-Phase

Conduit Systems

Definition of the Problem

The problems associated with the design or analysis of fluid

systems are challenging, particularly for systems involving unsteady

flows. A typical system may contain many components such as pumps,

valves, actuators, reservoirs, motors, etc., generally connected

together in some manner by fluid lines. A complete analysis of

such a system must involve not only the components but also the

fluid lines. This is particularly true for unsteady conditions

T'_here the cffcct_ cf the fluid lines have in some cases caused

otherwise well-deslgned systems to be inoperable.

In general, the area of study associated with the flow of fluids

through conduits is called "Conduit Dynamics." A rigorous application

of Conduit Dynamics to the study of a fluid line involves a complete

study of the fluid itself plus a study of the effect which the pipe

or conduit has upon the fluid. For example, in making computations

involving the effect of fluid compressibility we may make large

errors if we do not include the compressibility effect due to the

elasticity of the pipe walls. Conduit Dynamics includes fluid studies

which are associated with the two areas known as '_ater hammer" and

"surge"



The complete description of a fluid line in which the effects

of compressibility, fluid inertia, viscosity, and heat transfer are

important involves the simultaneous solution of the following equations:

i) Equations of Motion (Navier-Stokes equations)

2) Continuity equation

3) Energy equation

4) Equation of state of fluid

5) Dynamical equation of motion of tube or conduit

Also, application of the boundary and initial conditions is necessary

in order that answers may be arrived at for particular cases of

interest. An exact description, i.e., an exact solution of the govern-

ing equations, is nearly impossible. However, by means of various

simplifying assumptions, it is possible to arrive at solutions which

yield rather good quantitative descriptions of the system being

analyzed. In many cases these simplifying assumptions are question-

ableo By means of the discussions which follow, an effort will be made

to present, in an organized manner, the work which has been accomplished

by previous investigators° Indications will be made, where possible,

of the application and limitation of the ideas.

2.2 Lumped and Distributed Systems

The physical properties of all real systems are distributed with

respect to time and space. The extent or influence of this distributive

effect varies greatly, depending on the particular system being studied.

For the case of the fluid systems which will concern us, this distri-

butive effect may or may not need be considered. In general, those

physical systems which are described by relations involving distributed
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parameters are called distributed parameter systems. The dynamical

equations for distributed systems are generally partial differential

equations. Those systems which do not involve distributed parameters

are called lumped parameter systems. The dynamical equations for lumped

systems are generally ordinary differential equations. If we take a

distributed parameter system, average the effect of the distributed

parameter(s), and concentrate this average at some point, then we

say that we have "lumped" the system. The validity of approximating

a distributed system by a lumped system or systems depends upon the

operating conditions of the system and also upon the manner in which

the lumping is performed.

The distributed effects of fluid systems which will concern us

are those due to compressibility, inertia, and resistance. In the

literature, those studies which involve compressibility and inertia

inertia effects are called "surge studies."

Linear Distributed Models - No Conduit Wall Effects

For the purposes of this discussion, consider a fluid conduit

system to be describable in terms of a cylindrical coordinate system

as shown in Figure 2.1. Unless otherwise indicated we will assume

laminar, axisymmetric flow. Also, for brevity, we will use vector

notation where applicable (a summary of vector notation is given in

Appendix B or see reference I).

As indicated in the introduction, a complete description of the

system involves solving the following equations.



A) The Navier-Stokes Equations [2, 3]*-

Assuminga fluid of constant viscosity, we maywrite

B) The Continuity Equation

C) The Energy Equation

Assuming the fluid to have constant specific heat and viscosity,

we have

where _ is the dissipation function [2] and q is the vector heat

flow rate°

D) Equation of State of Fluid

The equation of state of a fluid is the functional relationship

between its pressure, density and temperature (i.eo, its state vari-

ables)o For a liquid it is given by

P

where _ is the bulk modulus of elasticity of the fluid.

In this chapter we will be mainly concerned with those conduit

models which are describable in terms of first-order or linearized

governing equations° When this is done, the nonlinear convective

inertia terms which appear in the substantial derivation D/D t are

removed° Also, where 0 appears alone it is replaced by an average

Brackets denote references at end of report°

8

(2.1)

(2.2)

(2.4)

(2.3)



density P0 • We will also neglect temperature effects unless it

is otherwise specified. Under these stipulations the governing

relations become,

for the first-order equation o£ motton_

for the continuity equation, and

(2.5)

(2.6)

(2.7)

£or the liquid equation o£ state. The quantities v and p nov

represent small perturbations from some steady condition. We must

also restrict ourselves to perturbations about amean or net velocity_

v o << c o. These restrictions are important to zemember. InSection

2.7 we will discuss brie£1y the effect o£ violation o£ these assumptions.

X

if'

Figure 2.1 Coordinate System

9



Frictionless Model

The starting point for studies of conduit dynamics is the

one-dimenslonal wave equation which was first derived by d'Alembert

in about 1750 in connection with his studies of vibrating strings.

_41 and Allievi _5] are generally credited as firstJoukowsky

associating wave phenomena with water hammer problems in order

that studies of the wave equation could be used in explaining

pressure transients in conduits. The wave equation for a

compressible liquid is derivable from Equations (2.5), (2.6),

and (2.7) if one assumes that the viscous effects are negligible.

The result is

(2.8)

where co is the isentropic speed of sound in the fluid and is

given, for a fluid, by

/Co =

v represents the fluid disturbance velocity in the direction of

propagation. Solutions to Equation (2.8) predict sinusoldal

pressure and velocity disturbances propagating unattenuated with

respect to space and time with a veloclty co . If Equation (2.8)

is solved for the case of a suddenly closed valve on one end of

a llne with a constant pressure reservoir at the other end, Figure

2.2a, then the disturbance pressure will be of the form

(2.9)

(2.10)

I

I
I

I

I

I
10
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(a) Conduit with Suddenly Closed Valve at One End, Reservoir Other End

L
m m

Ir 2fr _rr

m

4_ _Te lit

(b) Square Wave Pressure Variation at Suddenly Closed Valve

L
r

'Co_

,,,,,. ,,y/l/./// .'/,/'..'////,///,,, .'/7/A//,/• ,.. ///////////////A

._.... .. .,,,.. .U/////J
_/ J J-. "j'j

l,,L

(c) Pressure History of Naves in Conduit for One Half Period

Figure 2.2 Suddenly Closed Valve - Classical Water Hammer Problem
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where v o is the initial mean velocity in the pipe before flow

stoppage. Equation (2.10) is the mathematical expression for a

square wave with period (4L/co), see Figure 2.2b. Now examine

the physical chain of events which result in this pressure square

wave. At the instant of valve closure the fluid st z - L is

instantly stopped and the kinetic energy of the fluid is converted

instantaneously (no friction) to potential energy (pressure). This

positive pressure wave propagates toward z = 0 with velocity cO

and reflects back to z = L with zero pressure, see Figure 2.2c.

The pressure wave then becomes negative and propagates again to

z = 0 where it reflects with zero pressure back again to z = L,

thus completing one cycle of the pressure wave.

It is evident from this discussion that the conduit of Figure

2.2 has a characteristic "natural" frequency of oscillation fc - Co/4L.

A critical analysis of Equation (2.10), however, shows that this

particular disturbance actually consists of an infinite number of

discrete characteristic frequencies fc = Co(2n-l)/4L. In general,

we may say that a conduit will have an infinite number of characteristic

frequencies, whose values depend not only upon co and L but also

upon the end conditions for the conduit. When we excite this system

with some form of time variant non-sinusoidal disturbance, the system

response will be the sum of the response of each characteristic

frequency. The extent to which a given characteristic frequency

will be "excited f'depends on the type of disturbance. In general,

the "sharper" the disturbance, the greater will be the extent to

which the high frequency terms are excited° It is important to

12
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reallze that the above results are very idealized and include neither

the effects of friction or of pipe wall elasticity (these topics

will be discussed later on). The results, however, indicate the

upper limit of amplitude for a given disturbance. Extensive

treatments of the application o_ this simple theory to practical

problems may be found in references _6. 7, 24_. These applicat ions p

in general, involve a graphical or numerical solution of the wave

equat i on.

_r_ct_nZffects

_e.g._ 12_ performed experiments on models
When researchers

demonstrating water hammer they found considerable discrepancy

between the simple plane wave theory and actual results. They

£ound that when sudden flow changes were effected, the resulting

pressure transients changed shape with time similar to the diagram

in Figure 2.3.

P

b

Figure 2.3 Actual Pressure vs. Time Plot for Suddenly Closed Valve
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We see that, in the actual case, the sharp corners of the pressure

trace are being "rounded off" and the amplitude is decaying with time.

This phenomena results from dispersive and dissipative effects which

are a consequence of viscosity, pipe wall effects, etc. In general,

they result from friction effects. It is interesting to note that

the greatest dispersion and dissipation occur on the high frequency

terms which are those terms responsible for the sharp corners of the

pressure trace. To account for all dispersive and dissipative effects

would require an exact solution of the governing equations. However,

past researchers have obtained useful results by means of approximate

solutions.

Plane Wave Viscous Model

It was demonstrated by Stokes that plane or unbounded waves

do not satisfy the simple one-dimensional wave equation, but rather,

due to viscosity, must satisfy

(2.11)

Equation (2oli) may be obtained from Equations (2.5), (2.6), and

(2.7) by assuming one-dimensional effects onlyo

(2° 11) may be represented by

Solutions to Equation

(2.12)

where y is a complex constant called the propagation constant or

propagation factor and is given_ in general by

(2.13)

14
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The quantity _r is the spatial atte_uatio_ factor since the term eIYr _

represents the spatial decay or attenuation of the wave. The quantity

_/_c is called the phase velocity and is the actual velocity of pro-

pagation of the disturban_e_

equal c o The value of
0

is

In general, the phase velocity does not

fo_ the solution given in Equation (2.9)

4_

represents the angular frequency of the disturbance.

Solutions to Equation (2o11) have been obtained by some reseachers

[8] in an effort to account for dispersion and dissipation effects in

water hammer. These solutions, however, greatly underestimate the

viscous effect because Equation (2.11) accounts for shear only in

the direction of propagation (the z direction). Much greater viscous

effects are acting in the radial direction due to the fact that the

fluid velocity must go to zero at the pipe wallo We must conclude

then that solutions to Equation (2o11) will not adequately describe

the viscous effects in conduit dynamics.

(2.14)

Linea_ Resistance Model

The approach that s great number of researchers [6, 7, 9, i0, Ii,

12_ 13_ 14] have used is to modify Equation (2.5) by substituting in

place of the viscosity dependent terms a fricnion term which is pro-

portional to the velocity= The resulting equation of motion is

(2.15)

15



RI is a resistance or friction coefficient often given by the laminar

flow resistance value, or

- (2.16)

ro being the pipe radius. When Equation (2.15) is solved simultane-

ously with the continuity equation and the equation of state, we

obtain the same solution as in Equation (2.12) except _ now has the

value

/co + I . (2.17)

If the solution to Equation (2.15) is obtained for the case of

a suddenly closed valve, the pressure versus time plot at the valve

will look similar to Figure 2.4.

i
i

[

/

Figure 2.4 Pressure for Suddenly Closed Valve from Linear Friction Model

Although thl8 linear friction model does not give the exact answer,

especially over a wide frequency range, it has good utility when

experimental values of _ may be determined and when the frequency

range is limited°
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Two-D_nens£onal Viscqus Model-Longltudinal Mod_.se_.._

A model reported in the literature [17, 18]which more exactly

describes the first-order viscous effects for the longitudinal mode

of vibrationon._ is a result of the solution of the following reduced

form of the equation of motion

The resulting propasaelon factor is

where

_,, _.o(,_,_.)t '/2

(2. is)

(2.19)

and where _(_r O) and _(_ro)

zeroth order Bessel functions [19] of the argument _o. Brown [17]

has obtained the pressure history for the case of a suddenly closed

valve usin S the solution to Equation (2.18). His results have much

the same seneral shape as that of the experimental resulCsof ocher

authors, but theresultsare inconclusive since no supporCinsexperi-

mental results were included with checheoreticel predictions. We

can conclude, however, thatEquation (2.18) is a better representation

of the true physical situation than the models previously d_scussed.

From thestandp0int of frequency response chracteristics asreported

by Oldenberger and Goodson [10], this theory follows very closely

, [3 [ ,,]the experimental results. Brown 17 and two other authors 15,

have aolvedEquation (2.18) for • fluid in which the heat transfer

(2.20)

are, respectively, the first and

17



may not be neglected, thus it must be solved simultaneously with the

energy, continuity and state equations. This results in a propagation

factor

(2.21)

where now

_
_r (2.22)

and 00 is the Prandtl number [2] and y is the ratio of specific

heats for the fluid. This model has not been experimentally verified

by researchers so its validity must be regarded, at this time, as

undetermined.

Exact Linear Model

A model based on the exact solution of Equations (2.5), (2.6),

and (2.7) was presented in Interim Report No. 64-1. This model pre-

dicts an infinite number of discrete modes of propagation instead

of only one mode as the previously discussed models predict. In a

given situation, the fundamental or longitudinal mode usually pre-

dominates but there may be some circumstances under which neglecting

the higher modes leads to errors in the analysis. This more elaborate

model needs to be verified experimentally before any definite con-

clusions can be reached. Zt is interesting to note that the zeroth

mode propagation factor for this model coincides with that given by

Equation (2.19) for the slmpler model which has been proven experl-

mentally to give good results in predicting the frequency response

for this mode.

18
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Discussions of analytical and experimental investigations of the

higher modes of propagation in connection with inviscid flow or wave

propagation are extensive throughout the acoustics literatureF27 , 28,

etc. J. To the best knowledge of the writer, howeverp an exact29,

treatment of these higher modes with respect to viscous propagation

is nonexistent in the literature except for the presentation in

Interim Report No. 64-]_:,(see also Chapter VI of this report).

2.4 Fluid Transmission Line Concept - Transfer Equations

So far we have been discussing only time domainsolutions to

our equations. If we were to begin the exact study of a fluid

system in which several components were involved, then the time

domain approach would be exceedingly difficult and we would probably

get completely lost in the mathematics. A useful and simple approach

when dealing with the frequency analysis of fluid conduits (or any

fluid component) is that of the fluid transmission line [7, 10, 20].

Consider the fluid line to be representable as shown in Figure 2.5

as a four-termlnal system. If we solve the system equations for

v,
&

IP'.

Figure 2.5

i

Four-Terminal Representation of Fluid Conduit

our conduit in the Laplace transform domain then we obtain a rather

simple set of equations relating the four transformed variables, thus

19



(2.23)

and

v,_s/--v,cs)cos_/L- P,cs__.__)s_,l_¢'l.
(2.24)

In Equations (2°23) and (2.24), Vl(S), V2(s), Pl(S), and P2(s) represent

the Laplace transform of the respective time functions and s is

the Laplace variable. Also,

L:×:- ×_ (2.25)

and

Z¢ = _ F-e2 ¢ (2.26)

S

.I

I

I

I

I

I

I

I

Z is called the characteristic impedance of the conduit. The y
C

which appears in Equations (2.23), (2.24) and (2.26) is identical

with previous y's except that here i_ = s, the Laplace variable.

The value of y , of course, depends upon the model. It is important

to note that this form of the transfer equations is the same for all

of the previous models discussed, only the value of y varies. The

transfer equations for the four-terminal representation of Figure 2.5

will change, in general, when there is motion of the pipe wall and

when we include the higher modes of propagation. Note also that

the fluid velocities represented here are average values_ that is,

they have been integrated over the cross-section_ thus they are only

dependent on time and the axial coordinate°

20



of a conduit system cannot be over-emphaslzed.

fe quation can b wrltt :n or each element

th otal sy tempe forman:e Lay be analyzed b

i in o a new s t of t ansfer eq Lations which rep

Suppose, for exampl , that we have two compone

arranged in series as shown in Figure 2.6.

!

I Figure 2.6 Series Arrangement of Two-

!
Suppose that the transfer equations for element

in the form

p_cs'): A,(s) P,_)+ f_,_s)V,cs.)

and

Writing Equation (2,28) in matrix form givesI

I : o,l't ,l

The utility of valid transfer equations in the frequency analysis

If four-terminal trans-

fer equations can be written for each element of a fluid system, then

the total system performance may be analyzed by combining the equations

into a new set of transfer equations which represent the entire system.

for example, that we have two components of a fluid system

------------4

Series Arrangement of Two-Fluld Components

D,cs) T4_s).

I

i may be expressed

(2.27)

(2.28)

(2°29)

I
21



In a similar mannerwe maywrite for element 2,

Substitution of (2.29) into (2.30) yields

I:
C_.

or, by matrix multiplication

I

I• ° (2.3o)

We might for convenience write

P_ C, O,

(2.31)

, (2.32)

(2.33)

so that, effectively we have combined elements I and 2 into a new

element 3. We may represent the new element as shown in Figure 2.7.

vT,cs)
_- >

I= .... :.7 Combined Series Elements

Methods similar to this have been employed to great advantage in

the analysis of noise transmission in complex fluid systems which

involve series and parallel elements [22]. The matrix theory for

_our-terminal elements has been worked out by Pipes 123J for various

types of arrangements of the elements.
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2.5

In general, the matrix method approach is ideally suited to

frequency analysis studies of a conduit system. It allows very complex

systems to be analyzed easily with a digital computer.

Lumped Models

Up to now we have been discussing distributed parameter models

of conduit systems. We found such models to be expressible in terms

of transfer relations which lend themselves well to frequency analysis.

In general, these distributed models are difficult to deal with in the

time domain. This is a major handicap for many technically interesting

problems such as problems involving conduit systems which contain

valves closing or opening arbitrarily with time. In cases such as

this we may want only the time response of the system. In terms of

the distributed parameter models, this means that the transfer relations

for the system of interest must be transformed from the Laplace domain

back into the time domain, or that some numerical or graphical pro-

cedure must be used to solve the system describing equations. The

transformation of the transfer relations is very formidable; on the

other hand, the graphical or numerical procedures are rather simple

ways to analyze a system but lack the degree of generality usually

desired in system analysis. Due to these drawbacks in the application

of the distributed parameter modelst lumped parameter approximations

are often used in conduit system analysis. These models also have

drawbacks which much be kept in mind. The major restriction which

must be imposed on the lumped model of a distributed system is that

it is valid only at low frequency_ The method has been found to be

valid, in most instances, only if the frequencies involved are not

23



greater than about one-eighth of the first critical frequency of the

1 ..... .-1 ^_1 .... _- rl01_ ....... _.e_ _ • I _ . , . •

.,..u,,_,=_ ,_.,.,=,,,,--.,... _,,= =^_=_vL_ to L,'_ [es_Icc_on would be a system

which has sufficient damping so that compressibility may be neglected.

Now examine some typical ways in which conduit systems are lumped;

first, we need to consider the basic lumped elements, i.e., inertance,

capacitance and resistance [7, 20, 25].

Fluid Inert ante

Consider the fluid line shown in Figure 2.8. We will assume that

only the pressure and inertia forces are important and that compressi-

bility may be neglected.

Z=O Z=-L

Figure 2.8 l,_mped Model Inertance Element

Writing the equation of motion for this case gives

- foL (2.34a)

where vI = v_ = v since the flow is incompressible. The quantity

poL represents a fluid inertance. Before proceeding, it should be

noted that Equation (2.34a) is often found in various other forms

in the literature. It may be found also as

/s
A _ = _ (2.34b)

where q is the flow rate and A is the cross-sectional area. For

this case the fluid inertance is poL/A. Another form of Equation

(2.34a) is

"pl_1_)_Z =. _ d_____ = 7_ d_____ (2.34c)
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where w is the weight flow rate. Notice that the inertance, I, is

not the same in each case. Notice also that these equations are valid

only for constant area lines.

Fluid Capacitance

Now consider a fluid line in which only compressibility effects

are important, i.e., inertia or inertance effects and resistance

effects are unimportan t . With respect to Figure 2.9, applying the

f I? I

Z=L

Figure 2.9 Lumped Model Capacitance Element

continuity and state equations we have, since p: -- p_ ffip

L d.f)

_,-_= _a-_ - e_.de
(2.35a)

Again, as was true foz Equation (2.34) we could have just as well

have written Equation (2.35) in terms of _ or _r, but the value

of C would also have been different, thus

(2.35b)

and also

Fluid Resistance

,_,_,_,= ?o_ALdj._.c_.7f d-t (2.35c)

Because of the large number of parameters which may effect the

fluid resistance, it becomes more difficult in this case to write

25



a valid theoretical relationship which holds for a wide range of flow

................. =. _,= u_uai approach, therefore, is to treat

fluid resistance semi-empirically by defining the pressure drop due

to resistance between points i and 2 of a lumped resistive element as

f

(2.36)

, \\

Figure 2010 Lumped Model Resistive Element

where vI = va = v and R(v) is an experimentally determined function

of velocity. Of course if the pressure and velocity are steady, then

R(v) is well known from information contained in standard fluid

mechanics textbooks. For the case of oscillating flow only (no

net flow), we can get a good value for the resistance coefficient

by considering a low frequency approximation of the two-dimensional

viscous distributed parameter model. This will be shown later in

this section.

Fundamental Lumped Model

If we now combine our three basic elements together, we have the

fundamental representation of a lumped line. If we combine Equations

(2.34a) and (2.36) and consider also Equation (2.35a), then we may

__ Z= L
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write for the fundamental representation

and

Now take the Laplace transformation of (2.37) and (2.38), thus

and

sr_ P,cs).

(2.37)

(2.38)

(2.39)

(2.40)

Writing these last two equations in our standard transfer form gives,

and

(2.42)

In Chapter Vl we will further discuss these last two relations with

reference to the exact or distributed parameter models.

There are many possible ways of representing a conduit with

lumped elements other than the representation of Figure 2.11.

Equivalent Electrical Circuits

One motivation for using lumped models, other than slmplicity_

is that they readily yield to simulation on an analog computer.

Using a pressure-voltage analogy the electrical equivalent of the

27



fundamental lumped model becomes that shown in Figure 2.12.
f%

The values

Figure 2.12 Electrical Analogy for Fundamental Lumped
Conduit with Friction

of Re, Le and Ce depend upon what is made to be the analog of electrical

current. Table 2.1 shows the analogous quantities for three possible

analogs. Other circuits which are often used in an effort to improve

I

I

I

I

I

I

I

I
Electrical

Quant it y
,L

Analogous

Conduit

System

Quantity

Voltage

e

Current

i

Resistance

Re
ps

Inductance

Le

'Capa='it'ance"
Ce

p v R(v) PoL L/_(

P q _ OoL
X A AL/_,

p w L

Ag

z_Izl
poAg

Po gAL

Table 2.1 Electrical Analogs

the accuracy of representation are shown in Figure 2.13.

Method for Improving Lumped Mode_____l

We stated previously that a lumped model generally is valid only

if the frequencies involved are not greater than about one-eighth of

the first critical frequency of the lumped element. We can conveniently

get around this restriction by using several "lumps" to simulate a

conduit. Suppose, for example, that the highest frequency encountered
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Representation

&/z z_/_. L_/z #,--A

: -V ,

T Representation

Figure 2,,13 Variations of Electrical Analogs

is about ten times too high for valid lumping; then, if we use ten

electrically equivalent circuits in series (after reducing Re, Le and

Ce by a factor of ten) we are able to circumvent the original restriction.

Figure 2.14 shows the electrical analog for an n-segmented lumped model.

Figure 2.14 Analog for n-Segmented Lumped Conduit with Friction

In practice it has been found that this model does lead to greater

accuracy but that the number of segments required becomes very great when

the frequencies involved go beyond about the second critical value. Another

method of lumping_ invented to overcome this difficulty, is discussed below.
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Tapered Models

'fNe representatlon of iossiess _iuid lines by a tapered lumped

model is the subject of a patent by Paynter [26]° The analog of an

n-segmented tapered representation as presented in the patent is shown

in Figure 2o15o The values of the _'s and _'s is dependent on the

value of n and are given in Table 2°2 for values of n up to 5o

Figure 2.15 Tapered Lossless Analog

n_ 0

0o I• 000

0_

_a

_3

_a

_5

I

.250

• 541

• 750

2

• 142

.289

.311

.367

•547

3 4 5

.099 .075 .061

• 199 .152 .122

.205 .154 •124

.218 .159 .127

.244 .168 .131

.295 .182 .137

.452 .209 .146

.257 .160

.394 .185

.229

I

I

I

Table 2°2 Va]ues of _'s a_d _'s

It has been found that this tapered representation gives good results

for any n,_mber of critic:al frequencies and the number of "lumps" or segments

_eeded fer an accurate representati_en _)p to a given freq_ency is eq_al to
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2.6

N +i
c

where N is the number of critical frequencies below the desired
c

cutoff frequency.

Conduit Wall Effects

Thus far in our developments we have been overlooking the effects

which the conduit wall may have upon the fluid dynamics. Depending

upon the operating parameters of the system being analyzed, accounting

for the effects of the wall may be very simply achieved or, on the

other hand, may require an extensive mathematic treatment in order to

get reasonable answers. Fortunately, most problems with which we will

be concerned can be handled with the simple treatment. Problems demanding

a complex analysis usually occur only when dealing with extremely high

operating frequencies.

Simplified Analysis

Korteweg in 1878 showed that wave propagation was dependent upon

both the elasticity of the fluid and of the conduit wall and that the

resultant propagation velocity must be equal to or less than co . It

has been shown (see_ for example, Reference 7) that the actual sound

velocity is

do

(2.43)

where E t is Young's modulus for the tube material and f is given

by

thin-walled tube

thick-walled tube

(2.44)
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In Equation (2°44) D represents the conduit outside diameter and
o

Do represents the inside diameter° All that is required in the
l

simplified analysis is that we replace c with the c of Equation
o

(2°43) in our analysis.

More Exact Analysis

There have been a large number of papers written pertaining to

the effect of conduit wall elasticity on the transmission character-

istics of fluid within the conduit. Basically_ conduits may be divided

into two types with regard to the elastic characteristics of their walls:

elastic flexible and elastic stiff. For a conduit with elastic flexible

walls we assume that pressure variations within the conduit can cause

radial deformations which do not cause corresponding axial disturbances

in the conduit wall, i_eo, all disturbances in the wall are localized

and cannot propagate axially along the conduit wall_ For elastic

stiff walls, on the other hand, disturbances ca___n_npropagate axially

along the pipe wallo Some of the authors who have made contributions

on the effects of conduit elasticity are Lamb _27], Jacobi [281, Morgan

[29], Lin and Morgan [30] and Skalak [31]o None of these authors have

treated exactly a viscous fluid in this connection° An exact treatment

of both flexible and stiff walls for a viscous fluid is outlined in

Chapter V_

In general, the relations expressing the propagation velocity

variation with frequency have trends as shown sketched in Figure 2.16.

Notice that only one mode transmits for all frequencies for the case

of an elastic flexible wall, whereas two modes transmit at all frequencies

for an elastic stiff wallo Note also that the limiting value for small
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2.7

frequency in both cases approaches the same value, c/c ° . This is the

sam_ value _ predicted by the simplified analysis from Equation (Zo43).

We see then that the simplified analysis is exact for low frequencies

for the zeroth mode (nonviscous fluid only).

Nonlinear Effects

Thus far in our discussion we have been limited to problems

involving small perturbations about some steady flow condition where

the steady velocity component is much less than c . The reason for
o

imposing these restrictions stems from the fact that, in the previous

developments, the nonlinear terms of the equations of motion were

neglected. Consider again the exact form of the Navier-Stokes

equations (for a constant viscosity fluid) given by Equation (21.),

or

The difficult nonlinear terms are contained in the substantial

derivative, D$/Dto For the velocity component in the z direction,

we have (assuming axisymmetric flow),

There seem to be two main conditions_ with respect to problems of

conduit dynamics, under which we must account to some degree for

the nonlinear terms of the equations of motion° These conditions

are:

I) Case where there is a large steady flow component but

small unsteady components°

(2.1)

(2 °45)
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2) Case where the unsteady terms are large and the steady flow

terms may or maynot be large.

Wewill now discuss each case in more detail.

Case i

Weassumein this case that wemaywrite for the velocity

(2.46)

where Vzo is the steady flow term, i.e. independent of time, and

vz is the time variant perturbation or disturbance velocity. We
1

assumealso that I Vz_I << I Vzol" Based upon these assumptions

we mayapproximate Equation (2.45) by (after neglecting the small

order terms)

-- -- +25o
D6 @6 (2.47)

Since Vzo will be a known quantity as a result of solving the steady-

state hydrodynamical equations, this means Equation (2.47) is linear;

thus, we have linearized the substantial derivative for this case.

Regetz [32] utilized a linearization such as this to enable an

analytical description of the response characteristics of hydraulic

lines with a net flow. Regetz' analytical work is for nonviscous flow.

Considerable work has been done along these same lines by one

of the project members and is reported in Chapter VI.

Case 2

If the unsteady perturbations are of sufficiently large magnitude,

then a linearization procedure will not work and one has to contend

with the nonlinear equations. This area of study needs much work before

35



generally applicable methods of solution are available. In manycases

the method of characteristics [33] maybe used if we do not have to

contend with viscosity°

2.8 ComponentEffects

There are manytypes of componentscommonlyassociated with fluid

conduits which affect the transmission characteristics of the system.

The most basic of these is the orifice and is the one to which wewill

devote our attention.

With respect to conduit dynamics applications, only a small amount

of literature is available that specifically concerns the nonsteady flow

of a liquid through a circular orifice. The problem has not been one of

general interest since highly powered and slowly responding systems can,

in generalo be analyzed with the aid of the steady state orifice equation

modified by appropriate correction factors. More interest is being shown

in the subject as systems becomemore complex.

In the field of acoustics, however, the problem of nonsteady flow

through an orifice is fundamental. It will be shownthat someof the

concepts and expressions from this field are applicable to hydraulic

problems. Indeed, the bulk of the literature surveyed is from acoustic

sources.

A treatment of the unsteady flow of a liquid through an orifice

in a conduit is due to Goodson[34]° In this method the describing

partial differential equations are reduced by integration to a linear

ordinary differential equation in time relating flow, pressure drop

and area of the orifice. Nowfollow his development.
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We will assume the following conditions to hold:

(I) The conduit length is much greater than its diameter so that

wave effects associated with the orifice may be neglected.

(2) Tube wall effects are negligible in the vicinity of the orifice.

(3) Viscous effects are negligible.

(4) Density changes are small.

If we average the equation of motion, Equation (2.1), across the cross-

section, considering the above conditions, we then may write

---_+ _ + -_= _-'_=0 (2.48)

for the one-dimensional equation of motion, and

for the continuity relation. Here, q = q(z,t) is the flow rate;

v = v (z,t) is the average axial velocity over the cross-section; and
m m

A = A(z,t) is the orifice area. We now define an effective length _o

of the orifice, as shown in Figure 2.17, to account for the effect of

.-_,,..-_..

,,.,,,t. JtoU--.-.-__.,._

Figure 2.17 Flow Patterns Near Orifice

37



the orifice on the flow patterns in the vicinity of the orifice. Goodson

has slmulL_eou_iy integrated _quation (2.48) and (2.49) from 0 to
o

which results in an ordinary differential equation relating flow rate and

pressure drop in terms of a time variant area for the case of a compressible

liquid. For many purposes the compressibility effects may be neglected

which much simplifies the resulting differential equation to

where q(0)

across the orifice°

is the flow rate at z = 0 and gp(t)

Also,

and

(2.50)

is the pressure drop

We can express Equation (2.50) in a more convenient form by letting

q = qo + ql where qo is a steady flow term and

flowo We then have, assuming q_ is small,

where P = P0 + Pl and P0 is the steady pressure and Pl is the

perturbed pressure° No experimental evidence is presented by Goodson

specifically verifying this orifice model. This model is interesting

from the standpoint of accounting for the nonlinear characteristics of

orifices and also in allowing the orifice area to be variable in time°

Notice that, in view of the discussion of Section 2.5, Equation

(2.53) demonstrates the pressure drop to be composed of an inertance

(2.51)

(2°52)

q_ is the perturbed

(2.53)
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term plus a resistive term; thus we may rewrite Equation (2.53) in

the form

(2.54)

I is the inertance for the orifice and R(q) is the resistance.
q

Thurston and Martin [35] investigated the acoustic impedance of

a small orifice in a thin plate for liquids driven by a high frequency,

low amplitude driver. The results are shown in Figure 2.18.

Figure 2.18 Inertance and Resistance Versus Volume Flow

for Oscillating Flow Through Orifice

The region in which resistant and impedance are not a function of

volume flow is defined as the linear region, and where they are not

independent of volume flow it is called the nonlinear region. These

investigators reported distortions in the sinusoidal form of the differ-

ential pressure across the orifice as the nonlinear region was penetrated.
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The end correction factor for an orifice is defined as the length

whzch must be added to the real length of the orifice in order to render

correct the calculation of resistance and inertance using the exact so-

lution for the per-unit-length values for an incompressible fluid being

driven periodically in a tube of infinite length° The concept is due to

Rayleigh [36] who arrives at the range of end correction values

 _dd

from total work calculations. Some investigators select values from

this range while others modify it. Goodson incorporates the end correction

factor in his choice of go" Thurston and Martin relate resistance and

inertance to end correction factors by the expressions,

AZ (2.55)

and

where R/R ° and I/I are functions of A(pw/D) ½.o

Thurston, Hargrove, and Cook [37] present a more comprehensive study

of low amplitude flows through small orifices by the use of more advanced

instrumentation°

If the instantaneous volume flow through an orifice is

the total pressure differential across the orifice is a function of the

odd frequency harmonics and may be expressed as

(2.56)
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where

Experimental data is presented in terms of these parameters.

The effect of adding a steady flow componentto the sinusoidal

volume flow input can be described by

Since the differential pressure is a function of all frequency harmonics,

where, Apa is the increase in the steady flow pressure when the sinus-

oidal flow is added, and Apo is the pressure differential resulting

from qs"

Thurston et. al. define the differential pressure across the orifice

as,

where,

PL = Linear pressure contributions, and

PNL= Nonlinear pressure contributions.

In the linear region Thurston's statement of the pressure flow equation

is,
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where, R and I are approximately constant for small volume flow rates
8d

as d=fi_ed by ENu_Lio_I_(2°54) and (2°55) and applying 6 - 3_ At

higher volume flow rates the nonlinear pressure drop is generated by

the convective acceleration of the fluid entering the orifice. The energy

associated with this componentof pressure drop is not recovered down-

stream of the orifice since it goes into the formation of vorticies and

maintains circulations. Hence,

where,

The authors also present semi-empirical data to show the dependenceof

the pressure flow equation (8oeo, the dependenceof o and 5) on the

parameters, orifice diameter, velocity, frequency, orifice length, and

kinematic viscosity. The equation is most directly influenced by parti-

cle velocity.

Wood[38] states that the zero frequency limit of resistance for

periodic flow should be equal to the resistance for steady-state flow

for the linear region of operation. He presents steady flow data for

orifices which show that at low values of volume flow= resistance is

independent of volume flowo Appropriate values of periodic flow fall

on the curves as shownin Figure 2.19.

The value of Reynolds number at which the nonlinear region begins

is, in general, very close to ten. It is also significant to note that

the values for periodic flow do not seemto correspond to this transition

point. Woodpoints out that for a knife edged orifice the entire effect-

ive length of the orifice is due to the end correction.
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Figure 2.19 Resistance/Viscosity Versus Reynolds Number

An early development of a formula for the nonlinear acoustic re-

sistance of an orifice is due to Sivian [39]. His expression is based

on the consideration of the kinetic energy of the fluid in the orifice

for the steady flow of air. The plot of resistance versus particle

velocity was verified experimentally by Thurston et.al. [37].

Papers by Thurston and Wood [40] and Ingard and Labate [41] are

of general interest because the present evidence that for small sinus-

oidal fluid motions the relationship between volume flow and differential

pressure can be characterized by constant values of resistance and inert-

ance. These references lend further credence to the concept of the linear

region.

The problem of the description of an orifice of appreciable length

has been regarded as difficult by some investigators [37]. Karal [42]

considers the orifice to be a circular constriction between two segments
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of a circular conduit° He analytically derives a correction which can

be added to the analogous acoustical inductance of a tube of circular

cross section and interpreted physically as an increase in the effective

length of the tube°

Bolt, Labate, and Ingard [43] empirically measured a correction

factor and a theoretically derived term which includes tube wall effects.

Thurston and Wood [40] empirically determined an end correction factor

and separated the impedance of the orifice from that of the tube.

The classic expressions from which many of the above references

have been derived are due to Crandall [44]. Bergeron [24] presents a

practical graphical treatment for unsteady flow through an orifice and

for the case in which orifice area is a function of time; however, his

approach requires complete time domain characteristics and is not appli-

cable to the problem considered herein°
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3.1

CHAPTER III

Discussion of Two-Phase Flow

Introduction

The term "two-phase flow" covers a large field. In general,

two-phase flow refers to the fluid flow of concurrent and counter-

current mixtures of any two of the three phases - gas, liquid, and

solid. The field of two-phase flow can be further subdivided into

two-component and one-component flow. One-component flow is com-

plicated by mass exchange between phases.

The flows of gas-liquid systems have external and internal

bounding surfaces. The external bounding surfaces are usually

considered to be fixed with respect to time; however, the internal

interfaces between the flowing media are generally variable in space

and time. Interactions of forces and thermal interactions (for

nonisothermal flows) arise at these interfaces. These interactions

fundamentally affect the changes in the fields of flow velocities,

pressures, temperatures, and thermal and diffusion fluxes trans-

ferring from one point of space to another point separated from

the first by an interface.

The existence of twice as many flow and property variables

indicates that even the simplest physical model will produce com-

plex relationships. The simplest of models has not been adequate.

However, with the aid of high speed digital computers and recent
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developments in numerical techniques, the solution of a two-phase

_Lubl_m d_e_ not seem impossibleo

This chapter will be limited to a discussion of one component,

liquid-vapor, two-phase flowo This is the type of flow which would

normally be of concern in the flow of a cryogenic fluid through

conduits°

3°2 Discussion of Two-Phase Single-Component Flow

The amount of material published on the subject of two-phase

flow has increased tremendously over the past decade° According

to Reference [47], over 400 publications on two-phase gas-liquid

flow phenomena appeared during the year 1963. These publications

do not include the subjects of atomization, cavitation, and con-

densationo With such a large number of publications appearing

each year on this subject, it is difficult to thoroughly review

all of the material° Several recent documents have attempted to

compile a list of important publications on the subject of two-

phase flow_ References [48]_ [49]_ [50], [51]o It has been said

that it may soon be necessary to have a bib]iography on two-phase

flow bibliographicso

Basically, the analytical treatment of two-phase flow is no

different from that of single-phase flowo The fundamental concepts

of conservation of mass, conservation of momentum, and the first and

second laws of thermodynamics hold for two-phase flow as they do for

single-phase flow. These basic laws may be expressed i_ differential

form leading to the differential equations of conservation of mass,

conservation of momentum and conservation of energy_ A difficulty
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arises in the solution of these equations however since the differ-

ential equations must be written for each phase and solved simul-

taneously. The difficulty is in attempting to write the necessary

boundary and initial conditions for these equations. The complexities

involved in such an approach have limited the usefulness of this method.

A number of simplifying assumptions have been put forward in the liter-

ature to permit some accomplishments in predicting two-phase flow

behavior.

Perhaps the most common assumption that has been made is the

recognition of distinct flow patterns that exist in two-phase flow.

A study of these individual flow patterns or flow regimes has allowed

some simplifications to be made in the analysis of each regime. There

is some disagreement in the description of the various flow regimes.

However, most attempts at describing the flow patterns begin with dis-

tinguishing the flow as either horizontal or vertical. In horizontal

flow the flow patterns normally described in the literature include

spray or mist flow, annular flow, slug flow, wavey flow, stratified

flow, plug flow, and bubble flow. (The flow patterns are listed in

order of decreasing gas or vapor to liquid flow rate). In vertical

flow the patterns are usually described as mist flow, spray-annular

flow, annular flow, slug, churn, or plug flow and bubble or froth

flow. A number of flow regime maps have been given in the literature

for a prediction of the conditions under which the various flow regimes

exist. Several of these flow regime maps are given in Reference [47].

Since the area of study involved in this contract include situ-

ations where only a small amount of vapor formation will be permitted,
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the bubble or froth flow regime was considered to be the most important

regime for inEense study. This placed a limit upon the amount of liter-

ature which had to be carefully reviewed and permitted a narrowing down

of the techniques of solution of the two-phase problem. Bubble or froth

flow lends itself to certain mathematical treatment not useful in many

of the other two-phase flow regimes. The assumptions of isotropic and

homogeneousbehavior are fairly realistic ones for the bubble flow

regime°

The most important information needed for any bubble flow study

is that on the behavior of the individual bubbles. An adequate

description of bubble formation and growth is needed in order to

complete the description of the behavior of two-phase flow involving

the bubble or froth flow regime° Bubble formation and bubble dynamics

has long been of interest to persons studying the phenomenaof boiling

heat transfer. Muchof the current literature being studied and utilized

has comefrom this field.

Another important fact that has been realized during the course

of the investigation is that the presence of the bubbles in the liquid

has a very outstanding effect on the velocity of sound° At mass

ratios of vapor to liquid which exist in the bubble flow regime, the

effect on the sonic velocity is considerable° This can be seen in

Figure 3.1 and Figure 3°2 taken from Reference [52]° The speed of

sound has been shownin Interim Report 64-1 to be an important para-

meter in certain single-phase flow problems. It would be expected

that similar effects would carry over into the two-phase flow problems°

Ability to estimate the sonic velocity of various mixtures of vapor
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and liquid must be acquired before any great degree of success can

be accomplished in this area.

The prediction of pressure drop in steady two-phase flow is not

too difficult using rather well-established methods, first developed

in Reference [53]. The transient two-phase flow problem, however,

has been given only a minimumamount of study. A very recent survey

on the problem of flow oscillations in two-phase systems is given in

Reference [54]. It is felt that someof this material will be useful

in the continuing study of transient two-phase systems.
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Figure 3.1 Velocity of Sound in Steam-Water Mixtures as a
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Figure 3.2 Ratio of Adiabatic Sonic Velocity in Mixture to Sonic

Velocity in Gas Phase Versus the Ratio of Mass of Gas

to Mass of Liquid for Several Gas-Liquid Combinations
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4.1

CHAPTER IV

Review of the Literature on the Formation of Two-Phase

Flow As Caused by Pressure Drop (Cavitation)

Introduction

Cavitation is the formation and subsequent collapse of cavi-

ties in a liquid when the local static pressure at some point de-

creases to or below the vapor pressure and then increases as the

fluid progresses downstream. This can easily occur when a fluid,

near its saturation pressure, is flowing through conduits which

are equipped with components. Whenever cavitation occurs the

complexity of the flow problem is increased several times because

of the formation of two-phase flow. Two-phase flow is often un-

desirable not only because of the increased complexity of the

flow problem but also because of the unsteadiness often caused

by its formation. Therefore, before a complete analysis of two-

phase single component flow through conduits can be attempted, we

must be able to predict the conditions at which two-phase flow

starts and the conditions under which these cavities will collapse.

The literature on cavitation has grown to great proportions

since studies began in the late nineteeenth century. This is due

to the large number of variables involved and to the wide range

of the aspects of cavitation any one of which may happen to be

of prime interest to investigators in different fields. The
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literature reviewed on cavitation will be directed toward vaporous

cavitation as might be expected to occur in fluids flowing through

conduits.

In order to clearly bring out the problem to be discussed it

is necessary to distinguish between two broad types of cavitation.

Vaporous cavitation is the sudden expansion of a vapor bubble due

to vaporization of the liquid at the bubble wall whereas gaseous

cavitation is the relatively slow expansion of a gas bubble due

to diffusion. Strasberg _551 showed that the critical pressure

needed for vaporous cavitation would be equal to or less than the

vapor pressure whereas gaseous cavitation could occur at pressures

above the vapor pressure.

Vaporous Cavitation, a phenomenon caused by a decrease in

the stream pressure, may occur as a result of any one or combination

of: (I) friction in th_ conduit, (2) decreasing the flow area, (3)

centrifugal effects (flow in bends), (4) vibration and etc. However,

pressure alone does not specify the conditions under which a flowing

fluid will cavitate. It might be said that pressures below the

vapor pressure is a necessary condition for vaporous cavitation;

however, this is not sufficient because of other variables.

Variables Affecting Cavitation

The variables which affect the onset of cavitation may be

divided into four major groups. These groups together with the

individual group variables are:

I

l

i
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I. Fluid Properties

I. Vapor pressure

2. Surface tension

3. Wettabili_y of liquid

4. Viscosity

5. Thermal conductivity

6. Mass diffusion coefficient

7. Pressure

II. Foreign Varlables

I. Dissolved gases

2. Undissolved gases

3. Impurities (solids,

dissolved sollds,
etc.)

III. Conduit Variables IV. Dynamic Variables

I. Surface roughness I. Turbulence level
2. Material of conduit 2. Pressure distribution

3. Velocity
4. Vibration

Because of the large number of varlbles involved, the efforts to find

similarity or scaling laws encompassing all of these variables has not

been successful.

The problem of determining the conditions under which a fluid

will cavitate is not impossible because of the relatively minor role

most .......... _I ........

pressure is the most important single variable because it gives an

indication of the pressure necessary to cause cavitation. Several

investigators have considered the nuclei present in the fluid and

conduit as an important variable. The role of the nuclei in producing

cavitation will be discussed in a followlngsectlon.

Incipient and Desinent Cavitation

Incipient cavitation is defined as that phenomena which occurs

when the stream pressure progresses from a condition of no cavitation

to one supporting cavitation. It marks the onset of cavitation.

Deslnent cavitation, on the other hand, identifies the condition
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when the stream passes from a condition supporting cavitation to one

wherein there is no cavitation. It defines the cessation of cavitation.

Many investigators in the past called both the beginning and the

cessation "incipient" cavitation. Holl [561 in 1960 namedthese

two different occurrences of cavitation.

For incipient cavitation there will correspond a particular

value of p called the "inception pressure" Pi' whereas for desinent

cavitation there is the "desinence presure" Pd" From these definitions

and desinent-there follows the incipient-cavitation number

cavitation number Kdo defined by

Ki o

(4.i)

and

• (4.2)

The subscript "o" designates a reference state which is usually

taken upstream of the minimum pressure section.

experimental investigation by Lehman and Young [57_The and

Kermeen L58] indicate that the desinence pressure, Pd' is greater

than or equal to the inception pressure, Pi" The pressure difference

Pd - Pi is often referred to as the "cavitation hysteresis." Thus,

for the same vapor pressure, we can write the following relation

between Equations (4.1) and (4.2)p

_do _ _-o " (4.3)
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For a given flow condition Kdo appears to be the upper limit for

Kio. Holl _56_ pointed out that investigators, in the past, called

desinent cavitation as incipient cavitation because of its repeatable

nature. However, in some cases, there is no difference between incipient

and desinent cavitation except in the definitions.

The Inception of Cavitation

A. Nuclei Theory for Cavitation Inception

It is now the generally accepted view that the inception

of cavitation in ordinary liquids is associated with the growth of

nuclei containing vapor, undissolved gas_ or both, which are present

either within the liquid or in crevices on bounding walls. On the

basis of physlcal arguments made by Eisenberg [59], it Is unlikely

that completely dissolved gases can play a dominant role in inception,

although in certain cases such dissolved gases may become important

during the inception process. The work of Harvey, McElroy and White-

[60] is of particular importsntce in this connection, havingley

demonstrated that water, saturated with air, when "denucleated" by

prior application of large pressures exhibited very high fracture

strength. Thus, the presence of such nuclei is taken to account

for cavitation onset at pressures of the order of vapor pressure.

Cavitation inception is a dynamic phenomenon; however, the

basic principles can be revealed by a static analysis. For static

equilibrium the following equation, for a spherical bubble, must be

satisfied:

(4.4)
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For a constant weight of a perfect gas at constant temperature pg =

--_, where is proportional to the number of molecules or weightC_

of the gas and R refers to the radius of the sphere. Hence, Equation

(4.4) becomes

The minimum value of

or

C I _"

P " Pv " p* occurs at a radius

(4.5)

In this relation the negative sign indicates that the critical fluid

pressure is actually below the vapor pressure° If the pressure is

decreased slightly from the condition of (p - Pv)min = p* at R = R*,

the bubble becomes unstable and tends to grow without bound. At

pressures greater than the critical pressure, the bubble is stable

and assumes an equilibrium radius satisfying Equation (4.4). The

relation between P - Pv and diameter for different values of C%

and assuming a surface tension value of 0.005 ibs. per ft. for 68 F

water are shown in Figure 4.1. The corresponding relation between

pressure and critical diameter is shown in Figure 4.2.

It may be observed from Equation (4.6) that the critical radius

for a bubble containing only vapor (C%-0) is zero and consequently

the fluid pressure must be infinitely negative in order to cavitate

such a bubble. This requirement for infinite pressure to cause
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instability of a vapor bubble must be modified when the bubble radius

approaches moiecui_£ size and thc continuum thpory becomesinvalid°

The previous analysis has considered only the static stability

of the cavitation nuclei° It appears reasonable to expect that if

nuclei are subjected to transient pressure reductions the critical

pressure for instability might be considerably less than the value

given by Equation (4.6). Noltingk and Neppiras [62], [63] were able

to show, in the majority of cases, that the critical pressure pre-

dicted by the static analysis is not significantly altered by the

duration of the transient° The investigations performed by Noltingk

and Neppiras revealed that the pressure need only stay at the critical

pressure for a time slightly greater than the natural period of oscil-

lation of the bubble° For a bubble diameter of 0o001 inches, the pressure

need remain at the critical value for approximately i0 microseconds°

On the other hand, cavitation experiments conducted at high velocities

on small scale models with short low pressure regions (flow through

venturi type nozzles) can be misleading if it is assumedthat dynamic

effects do not influence the critical nuclei size and pressure_

Bo Sources of Nuclei

In the_previous section a spherical gas bubble was assumedas

the nuclei for cavitation. Suchnuclei do exist near the surface of

agitated liquids as continuously entrained air bubbles. However, at

greater depths, or in a confined fluid, it appears that the gas should

dissolve in the fluid° The partial pressure of the gas within the

bubble is higher than the surrounding fluid pressure because of surface
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tension and thus some gas should diffuse into the liquid. The loss

of gas decreases the size of the bubble, and thus increases the

surface tension pressure which increases the gas partlal pressure

and increases the rate of diffusion into the liquid, and so forth.

From Equation (4.6) we have seen that stable spherlcal vapor nuclei

cannot exist. Consequently, some nuclei source other than free gas

bubbles must be postulated in order to explain the cavitation that

is observed in fluids in which free gas bubbles of the required

size for instability are not observed.

When new glass which has been cleaned with acldis i_me_aed

in water, the water tends to fill all the microscopic cracks and

crevices. Such a surface is often referred to as hydrophylllc.

E64_ ran some gas evolution test bySchweltzer and Szebehely

placing the fluid to be tested in steel and lucite containers.

No precaution was made to chemically clean the containers. With

water they were unable to produce any appreciable supersaturation

without observing bubble formation. However, with petroleum

hydrocarbons, which wet both steel and lucite, they observed

conslderable super_aturatlons (100 percent) without bubble released

provided the liquid was kept in a static state. Thus, this

illustrates that the properties of the liquld are important when

studying cavitation.

A material in which water does not tend to fill microscopic

cracks and crevices is cl_slfled as hydrophoblc. This type of

material includes almost everything and thus gas volumes are

easily contained in the _revlces of foreign particles entrained
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in the fluid or in the crevices of the boundary material itself. It

is presently believed that the _uc_c_.....,,==_ _v_......._h_ ravitation pro-

cess (other than free gas bubbles) are located in the crevices and

cracks of such hydrophobic materials. Harvey, McElroy, and Whiteley

_601 were able to show that in a crevice of a hydrophobic material

it is possible to have contact angles between the liquid, solid,

and gas, such that the surface tension pressure is considerably

reduced and tends to decrease rather than increase the cavity

pressure. Under these circumstances, it is possible to postulate

an equilibrium condition in which gas neither diffuses into or out

of the gas trapped in the crevice, and it is these microscopic gas

volumes that are currently believed to be the nuclei needed for

cavitation inception.

_65] explained the difference between a pure liquid'sKnapp

ability to cavitate and a liquid that cavitates as soon as the

pressure drops below the vapor pressure in terms of '_eak spots."

The findings of Knapp agreed with those of Harvey etoal. [60_ in

that weak spots which initiate cavitation usually occur on solid

surfaces in contact with liquids. Knapp observed that normal

cleaning methods were inadequate to remove weak spots from metal

surfaces. This is probably due to the presence of innumerable

cracks in the metal surface.

In su_nary, there are three distinct sources of nuclei. Each

source is capable of causing the phenomena of cavitation. These

are_
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I. The free undissolved gas bubble, usually macroscopic in

size.

2. The nuclei that exist in the crevices of foreign particles.

3. The nuclei that exist in the boundary material. Kermeen,

McGraw and Parkln _661 were able to take pictures of this

source of nuclei during a cavitation study.

The interpretation of cavitation tests, in which cavitation

is actually produced in the test facility, is effected by the nuclei

present. To properly extrapolate such test results to the prediction

of prototype cavitation, the relevant scaling factors must be con-

sidered.

C. Cavitation Scale Effects

If the occurrence of cavitation were uncluttered by the appear-

ance of scale effects, the experimental study of cavitation would

be fairly easy. The test of a given shape over a range of K
O

values would give the desired information. An indication of such

an idealized cavitation behavior is presented with the aid of Figure

4.3.

The streamlines and pressure coefficient, for potential flow

past a simple shape, are shown in Figure 4.3(a) and 4.3(b) respectively.

At some point on the body, the minimum pressure occurs. The absolute

value of this pressure is dependent only on the relative flow velocity,

V , the reference pressure, po _ and the exact shape of the body.O

This minimum pressure value for the given body is thus uniquely

characterized by , the minimum value of the conventional
Cpmi n

pressure coefficient in which
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In the idealized situation, no cavitation test would be required

because the value of K ° at which cavitation would first appear is

simply -Cpmin. If the pressure could be measured at the proper

location, CPmin could be found by a noncavitating test with water,

or even air, as the test medium. However, as a result of scale

effects, cavitation tests are required.

The manner in which a cavitation test would verify the Kio

prediction, in the idealized cavitation situation, is shown in

Figure 4.3(c). A cavitation test is normally conducted with the

initial operation of the test facility at a high K value, for
O

which there is no possibility of cavitation. The operating K
o

%

Vo

1 71 _ f Pm_.
I J I ,X

i///111/I

//////

(a) FLOW PAST A BODY

[b) PRESSURE VARIATION
ON BODY

I

K_

CAVITATION NUMBER, KO

(¢) DIRECTION OF TEST

SOURCE" REE _7

Figure 4.3 Body Flow Dynamics and Idealized Cavitation Test Behavior
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value is then reduced, either by raising V ° or lowering Po' with

an associated decrease in the absolute pressure Pmin' until the

= below the in-value Pmin Pv is reached. The reduction of K °

) has no further effect on Pmin' which remainsception value (Kio

equal to Pv" However, the nature of cavitation is changed as K
O

is reduced below Kio. At the inception point, the cavitation con-

sists of small bubbles that quickly collapse with tremendous noise

as they proceed into regions of higher pressure. At K values
o

below Kio , larger cavities may form which change the flow and force

relations for the object or conduit.

Unfortunately, little is known about how the conditions, at

the beginning of a cavity, change with the degree of cavitation.

Thus, a detailed study of this could provide useful information.

From this discussion of the idealized cavitation occurrence

situation scale effects may be defined as any flow phenomena which

will cause deviations from the idealized occurrence. Thus, if

the pressure distribution over the body varies with the nature

of the flow, this represents one kind of scale effect. If

cavitation does not always start when Pv is reached, then another

type of scale effect is represented. The pressure distribution on

a body is affected by such factors as fluid viscosity, surface

roughness and etc. The pressure at which cavitation occurs depends

on such factors as nuclei present, surface tension, pressure dis-

tribution and etc.

Holl and Wislicenus [68] pointed out that the idealized

similarity relation of cavitation (K° = Po - Pv/½PoVo 2) is based

on certain assumptions. These are:
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i. All pressure differences in the flow are proportional to

p V 2 .

2. Geometric similarity includes surface irregularities of the

flow boundaries.

3. The vapor pressure in the flow field is constant and the

pressure at which cavitation takes place is the equilibrium

vapor pressure.

4. Cavitation takes place instantaneously whenever the vapor

pressure is reached.

The correct similarity relations, which are needed to describe

cavitation, are unknown. However, Holl and Wislicenus [68_
listed

several similarity relations which may help describe cavitation.

These are given in Table I. The classical relation, included in

Table i, must always be satisfied together with the requirement

of geometric and kinematic similarity.

4.5 The Investigations of Cavitation Inception

In the following sections we will discuss the experimental

and theoretical investigations of cavitation inception for unseparated

flow past streamlined bodies, Separated flow past non-streamlined

bodies, and flow through venturi type nozzles, orifices, and tubes.

A. Unseparated Flow Past Streamlined Bodies

A streamlined body is a body in which the curvatures are

sufficiently mild to permit nearly ideal flow (that is, flow without

boundary layer separation)° The pressure distribution on this body,

as obtained from potential flow theory, would be expected to be in
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good agreement with experimental measurements if the boundary layer

displacement thickness is small compared with the body diameter.

This condition is usually met if the Reynolds number is sufficiently

high to produce a fully developed turbulent boundary layer. _69_

and Hollander [70] made a high-speed photographic (20,000Knapp

pictures per second) study of the formation and collapse of individual

bubbles during the flow of water past a 1.5 caliber Ogive-Nosed body.

The life of the bubble from the instant it was large enough to be

detected until the completion of its first collapse was only about

0.003 seconds. The formation period required about three fourths

of this time, leaving one fourth for the collapse period. The

= 40 fps, Pv = 0.40 psia,conditions of the water tunnel were: V °

and Po = 4 psia.

In many of the pictures taken, it was obvious that the collapse

of one bubble had a major effect on the collapse of its neighbor.

Furthermore, as the severity of the cavitation was increased, the

bubble concentration built up very rapidly, so that rarely if eve_

could a single bubble be seen to form and collapse without inter-

ference.

Kermeen, McGraw, and Parkin [66] investigated several geo-

metrically similar hemispherical and lo5-caliber Ogive-NQsed bodies

for cavitation inception at various water tunnel speeds. The results

of this investigation are shown in Figure 4,4. Figure 4.4 illustrates

that the measured incipient cavitation numbers were less than ICPminl

and depended on both the model size and the test velocity. However,

the data indicates that the incipient cavitation number does approach
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I CPminl for large size bodies and high tunnel speeds. _t is suggested

that the scale effects shown in Figure 4.4 are primarily caused by

the low concentration of nuclei and the small nuclei sizes present

in the test water. E71 ] The curves shown in Figure 4.4 are average

curves drawn through the data.

I L °
0 I.O w

I ! _ !,cu,o: w,T_
, 1 i SOURCE: REF. 66

0.11 --_-'_HEMISPHIrR Ir ice I " O.7'4..... 7- .......-.-=

0.4 - -- _-- _-=--=- ==_--'=-_=:: --I-- ---_

dE,

1 l i I ]
0 20 40 (SO SO I00 120

FREE STREAM VELOCITY, VO ,FPS

Figure 4.4 Incipient Cavitation Number as a Function of Free-Stream
Velocity for Bodies With Hemispherical

Noses and 1.5-Caliber Ogive Noses

Figure 4.5 shows how the desinent cavitation number varies with

the Reynolds number for the flow of water past Joukowski hydrofoils,

For a given size the desinent cavitation number increases with the

Reynolds number. Furthermore, for a given Reynolds number, the

desinent cavitation number decreases with increasing size. On

the other hand, the NACA 16012 hydrofoil data shown in Figure 4.6

differ markedly from the trend shown in Figures 4.4 and 4.5. In

Figure 4.6 the cavitation number decreases for a given size with
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increasing Reynolds number (with increasing velocity) and increases

for a given Reynolds number with increasing size. This unique

behavior goes together with the flat pressure distribution of these

profiles at 0-degree angle of attack (see Figure 4.7) in contrast

to the peaked minimum pressure of other streamlined bodies treated.

Calehuff and Wisllcenus [74] reported that cavitation on the profiles

with flat pressure distribution had the form of traveling bubble8_

whereas with peaked under-pressures cavitation appeared to be _ttached

to the surface.

In Figures 4°5 and 4.6 the scale effects can be seen. Also, the

effect of pressure distribution on the inception of cavitation is

shown to have an important influence.

o.+oo.N°o° IIA._Eo,A+_CK-_ IIII

+o+_ IIII"" i
i _;, o.o,.>...'+:°" / 1I I +, ic.,_.i-os'loltti_lCAi-Io,, ,,. o,.c ___r_i__l_+_l.j .,-, . , l li

" ! ,ii till
_ _ !!!! .r.-+i

_>o,, : : . .+_../.. _,.b.!.lI
FLUIO:WATER . I]]L' I I I

tl IIll '"'_o., II11
°oJ I . I I111. I IIIl

I "I01 lOiilO I lOOilO II

REYNOLDS NUMBER, -_-

Figure 4.5 Desinent Cavitation Number as a Function of Reynolds

Number for Water Flowing Fast

Joukowski Hydrofoils
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The type of flow in the boundary-layer has an important effect

the inception of cavitation. Daily and Johnson [71 lon investigated

the effects of a turbulent boundary-layer on the inception of

cavitation for the flow of water through a two-dimensional nozzle.

The flow in the boundary-layer was rotational and the minimum

pressure did not occur on the wall (for large body curvatures) but

slightly away from it in the center of the eddies that compose the

boundary-layer. Thus cavitation can actually begin at values of

K ° that are slightly greater than I Cpmin I because of the additional

pressure reduction caused by turbulence. However, Daily and Johnson

pointed out that the boundary layer turbulence effect is small and

can usually be neglected at the high velocities that are normally

encountered in hydraulic structures where cavitation is expected.

The effect of air content on the occurrence of cavitation, for

water flowing past hydrofoils, was investigated by Holl [56]. These

hydrofoils were tested at various angles of attach. Figure 4.8

shows the results of these tests°

Holl [56] observed that two types of desinent cavitation could

be determined. As the pressure was increased causing the cavitation

to disappear, a pressure was reached where the cavitation disappeared

uniformly acros_ the span. This was referred to as areal cavitation..

However, it was observed that several cavitation bubbles still clung

to the surface and continued to do so up to very high ambient

pressures. These spots of cavitation were manifest on the NACA

16012 hydrofoils at angles of attack above the critical angle.
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Figure 4.8 Two Types of Cavitation on 2.5-In. and 5-1n.

NACA 16012 Hydrofoils

The critical angle of attack is that angle at which the change

of ICPminl with angle becomes very large. The critical angle of

attack for the NACA 16012 hydrofoils is about 1.5 degrees. [75]

[77] developed a relation, from boundary-layer gas-Oshima

nuclei interaction considerations, which allows predicting the

Reynolds number variation in Kio for flow past axially symmetric

bodies. Calculations of the turbulent boundary-layer growth on

the te8t bodies were combined with the suggestions of Daily and

[71], concerning nuclei growth and turbulence effects to
Johnson

predict the scaling of cavitation inception as observed on the

axisymmetric bodies referred to previously. Oshima'8 formula

appears to correspond closely with some selected experimental

data. However_ before definite conclusions can be formed about

thl8 work, additional experimental investigations (with liquids

other than water) are necessary.
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Knapp [78], in 1952, derived a formula which is similar to Oshima'

formula° However, Oshima was able to show that Knapp's formula is a

special case of his theory°

The inception of cavitation on isolated surface irregularities

imbedded in a turbulent boundary layer was investigated experimentally

and theoretically by Holl [79] and [73]. Holl was able to show how

the effect of a small roughness element (of height, h) on a smooth

surface may greatly increase the inception cavitation number (see

Figure 4°9)° In terms of the inception cavitation number, Kro , of

o
_-._o

o= • iI --0.50
_-.=1

FLUID: WATER
u SOURCE: REE 7:5

o
0 0.01 O.OZ 0.03

ROUGHNESS HEIGHT, h, INCHES

Figure 4.9 Calculation Effect of Relative-Roughness

for a Particular Flow

the roughness element and the pressure coefficient of the smooth

body the inception cavitation number of the roughened body is

-cp + (1-cp)K o. (4,8)
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The roughness is most detrimental when placed at the minimum pressure-

point of the parent body, that is, when Cp = Cpmin.

Holl

of a roughness element, h, to the boundary-layer thickness, 6, for

different veloclty-profile shapes and two different shapes of roughness

elements. The velocity-profi!eshape was expressed by the boundary-

6*
layer shape parameter H =-_-- , where 6* is the displacement

thickness and 0 the momentum thickness. Two familles of cylindrical

roughness elements having constant cross section were studied. One

family had a clrcular-arc cross section. The other family had a

triangular cross section. The results of this study are shown in

Figure 4.10.

Z

0
ODI 0.05 0. I 0.5 1.0 !_

RELATIVE HEIGHT OF ROUGHNESS.p

Figure 4.10 Cavitation Inception on Roughness Elements

in Boundary-Layer Flows
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The seriousness of roughness effects in producing cavitation

inception scale effects is illustrated by the following example.

[79 i Consider a body with -0.50 of such proportions andCpmin=

tested at such a speed (V° = 50 fps) that 5 = 0.048 in. As

Figure 4.9 shows, the effects for the sharp roughness of Figure

4.10 (and a fairly-normal turbulent boundary layer of H = 1.33)

are considerable. A 102% (Kio - I Cpmi_ / I CPminsl x i00) increase

in Kio occurs for a 0.001 in. high roughness and much larger

effects are easily possible.

B. Separated Flows Past Non-Streamlined Bodies

If the flow pa_t a body is decelerated too rapidly, the

boundary-layer separates and the pressure distribution along the

boundary is no longer a true indication of the minimum pressure

in the field. Unfortunately, there is no exact method of obtaining

the minimum pressure coefficient in the flow field in terms of the

measured boundary pressure. Nevertheless, some experimental studies

of cavitation inception have been reported.

Most of the available test data pertain to sharp-edged disks

(Figure 4.11) and zero caliber ogives, i.e. cylinders with a flat

cutoff end facing the flow (Figure 4.12). The most striking

difference, as compared to the behavior of streamlined bodies, lies

in the magnitude of the changes in the desinent cavitation number,

which varies by a factor of two for a change in Reynolds number

by a factor of ten. This appears to be at least twice the largest

change observed with most of the streamlined bodies (excepting the

Joukowski hydrofoil data shown in Figure 4.5). Furthermore, the
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cavitation number of bluff bodies (i.eo, separated flow) continues

to increase with increasing Reynolds number° In this respect the

test points of the zero-caliber ogives (Figure 4.12) seem to continue

the sharp disk data (Figure 4.11) without a break or indication of

leveling off.

Co Flow in Venturi-Type Nozzles

The venturi-type nozzle has proved to be an effective

shape for studying cavitation. This is due to the fact that a

wide range of flow conditions are easily obtained. Thus, studies

can be made for various degrees of cavitation under different

pressure distributions.

In the experiments cited above _Kermeen, McGraw, and Parkin

[66]_, no consistent effect of air content, varied between 7 and

13 ppm, could be detected° This disagrees with the observations

of Numachi and Kurokawa [83], McCormick [80], Crump [84], [85], and

others. Crump [84] found a significant dependence of inception on

total air content in experiments with a venturi nozzle having a

diffuser angle of 5o° He reports that in fully aerated fresh water,

cavitation first appeared at the boundary in the form of a small

vapor cavity° In deaerated fresh water, Crump found that cavitation

first appeared in the form of individual bubbles which do not neces-

sarily form at the boundary. Under these conditions, bubbles formed

and disappeared downstream under ambient tensions as high as four

atmospheres, Furthermore, he found that higher tensions were re-

quired as the velocity was increased.
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Figure 4.13 Critical Pressures for the Inception of

Cavitation in Fresh Water of Varying Air Content

Figure 4.13 shows that in the undersaturated liquid it was

possible to obtain tensions as the relative air content @/c_s

was reduced. Results in a nozzle with an abrupt expansion,

however, show opposite trends in the pressures required for

inception; [851 although here, too, tensions were obtained.

Comparable results for sea water are shown in Figure 4.14; in

this case, bursts of cavitation were observed at pressures well

above vapor pressure. While the trends in these experiments were

fairly definitive, the very large scatter of results is indicative

of the need for understanding the behavior and distribution of

nuclel; i.e, the mechanisms by which nuclei are stabillzed and

the characterization of nuclei content; e.g., a "spectrum," or

description of number and distribution in size. r977
L J
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Williams and McNutly [86J investigated the effect of an additive

(sodium nitrate dissolved in distilled water) on cavitation inception.

The incipient cavitation number was found to increase (cavitation

to become easier) with an increase in the percentage (from 0 to 0.4?°

by weight) of dissolved sodium nitrate.

The flow of liquid nitrogen through a venturi test section has

been investigated by Ruggeri and Gelder 8 • Just prior to incipient

cavitation, the minimum local wall pressure was significantly less

than the vapor pressure corresponding to the stream liquid temperature.

This pressure difference was called effective liquid tenaion. The

temperatures and pressures measured within regions of well-developed

cavitation were in thermodynamic equilibrium but were leas than the

temperature and the saturation vapor presBure of the approaching

78



I .

I

I

I

stream. These differences increased with both stream velocity and

extent of cavitation.

Figures 4.15 and 4.16 show comparisons of cavitation tests of

Nitrogen, Water, Freon-ll4, and Ethylene glycol (References [88],

[87], [89], and [90]) in the same venturi test section. Nitrogen

sustained more effective tension than the other liquids tested.

This indicates a possibility that temperature influences the

nuclei within the liquid and test section.

The effective tensions for all liquids studied increased with

increasing flow velocity. The effective tensions for Freon-ll4 in-

creased appreciably as the temperature was increased from 0° to 80°F.

The effective tensions for Ethylene glycol were practically independent

of the temperature level for the range studied. For water in the 40 °

to 80°F range, effective liquid tension was practically independent

of temperature but increased appreciably as the temperature was in-

creased to 120°F.

3.8

I I L WATER ( ? 5°F)' _.____________114 {O°F)

2.21-_- F-II4180OF)

, ....
_YCOL_8O_i___£ I I I II1_ NIT'#oGEN

FRE_-STREAM REYNOLDS NUMBER (BASED ON LIQUID PROPERTIES), Re D

Figure 4.15 Comparison of Incipient Cavitation Number for Nigrogen,

Water, Freon-ll4, Ethylene Glycol Flowing Through Same Venturi Model

79



-_°I = ,I Ir'NITROGEN REF 88 ,

Q ISOURCE IWATER, REF. 87
/FREON-II4, REF. 89 I

"% -50 =-........ LETHYLENE GLYCOL, REF. 90

0 SAME VENTURI TEST SECTION

.

........ & ..... ' _.c -4(

Iz

• !¢.

Z

9 -3(

Z
i,i
I-

'_ -2C .....

_J

_ -I0
_J

w

I
F-II4 (80°F) -

I

ETHYLENE

(O'F)

0
0 30 40 5O 6O

VELOCITY, Vo, FPS

Figure 4.16 Comparison of Effective Liquid Tension Based on Visible

Incipient Cavitation for Nitrogen, Water, Freon-ll4, and

Ethylene Glycol Flowing Through Same Venturi Model

Lehman and Young [57] investigated the pressures and cavitation

numbers, near the location where incipient and desinent cavitation

occurred, for water flowing through different convergent-divergent

test sections° The results of this investigation are shown in

Figures 4.17 and AoI8o The cavitation pressures measured near the

plane of incipient and desinent cavitation were generally higher for

the tests made using an abrupt contour test section. The curves shown

in Figure 4o17 disagree with what might be expected.

Hammitt [91] made an investigation similar to the investigation

made by Lehman and Young [57]° Hammitt observed no difference between

the incipient and desinent cavitation numbers while studying the

flow of water through a smoothly changing internal contour nozzle°

This corresponds closely with the investigation made by Lehman and

I

I

I

I

I

I

I

80



1

I

I

I

I

9O
FLUID: WATER

(n

80 SOURCE: REF. 57 .[
bJ _ INCIPIENT

Z ---0--- DESINENT

_m

" LIZ

°6o ....

_- f f TE,T,EC,,ON

° 'l. /Z SMOOTH CONTOUR

__ / /TEST SECTION_

dO 80 120 160 200 240 280

THROAT VELOCITY, Vt , FPS

Figure 4.17 Cavitation Pressures Near Cavitation Planes As a Function

of Stream Velocity at the Throat of a Venturi

1 ! I,LUlO: WATER I

{...__. INCIPIENT, REF. 57SOURCE DESINENT, REE 57

SMALL SMOOTH CONTOUR

TEST SECTION, REF. 91

_UPT CONTOUR

u ' (TEST SECTION

,A--SMOOTH CONTOUR

4O 80 120 160 200 240 260

THROAT VELOCITY, V t , FPS
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Young on a similar shape nozzle. However, the abrupt contour tested

by Lehmanand Young indicates that the conditions at the plane of

cavitation are a function of the pressure distribution prior to

cavitation°

D° Flow Through Orifices

The jets flowing from orifices into filled conduits (sudden

enlargements) represent cases of extreme separation where, in addition

to expansion and diffusion of the main jet, there is the generation of

secondary flow and countless small eddies and vortices° The pressures

within the eddies will be appreciably below that of the surrounding

fluid, particularly when the velocity of orifice efflux is high. These

low pressures can quite easily reach the vapor pressure of the fluid

and there exists the possibility of cavitation.

The effect of cavitation on the discharge coefficient of ori-

fices has received someattention [93], [94]. However, only the

investigation of the flow of pure fluids through orifices will be

reported at this time°

Jacobs and Martin [92] investigated the flow of water, liquid

hydrogen, and liquid nitrogen through sharp-edged orifices. They

were unable to produce cavitation as long as pure liquid entered

the orifices_ With liquid nitrogen, the pressures at the venae

contractse were as muchas 170 inches of liquid below the vapor

pressure, while with liquid hydrogen the pressures at the venae

contractae were as muchas 192 inches of liquid below the vapor

pressure° These were the lowest pressures attainable with their

apparatus°
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Jacobs and Martin observed that the only way cavitation could

be produced was to have two-phase flow entering the orifices. Zn

many tests even when two-phase flow entered the orifices, cavitation

symptoms were not evident.

g. Flow Through Conduits

Mikol and Dudley _95] investigated the conditions at

which cavitation inception occurs for the flow of Freon-12 through

small bore copper and glass tubes. The point of inception of

cavitation was observed to move by discrete jumps rather than in

a continuous manner as operating conditions were changed. This

was probably due to the gradual and uniform pressure gradient in

the tube. _n venturi test the inception site is fixed within

rather close limits by the nonuniform and sharper pressure gradients

imposed by the geometry. No such shift has been reported in any

venturi test.

Mikol and Dudley observed that the tube material had the

most important influence on the incipient cavitation number. The

incipient cavitation number for the glass tube was nearly twice

that for the copper tube. This result is in agreement with the

nucleation theory expectation that a metal surface should provide

many more nucleation sites than a glass surface.

Fauske and Min 1961 investigated the flow of slightly sub-

cooled Freon-ll through apertures and short tubes. They used a

modified cavitation number to establish a criterion for determining

single-phase or two-phase flow regimes in short tubes. The

modified cavitation number is:
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where AP is the pressure difference, Po " Pe for two-phase flow

or Po " Pb for single-phase flow. Figure 4.19 indicates that

for modified cavitation number below i0 the fluid exhibits completely

metastable single-phase flow. When the modified cavitation number

exceeds 14, two-phase flow exists. In the range of K between
o

i0 and 14, unstable transitional flow occurs.

Metastable

Single-Phase Flow

21 41 bl

Transit iona 1

LL Unstable --_Two-Phase Flow

ol !
81 1 121 141 161 1J1.._

KO 1 _ _ (_

Po

Figure 4.19 Correlation Number Determining the

4.6 Conclusions

The preceding discussions are primarily an attempt to point

out some of the knowns and unknowns about cavitation. For a

constant cavitation number, both the time of exposure to the

region of pressure below the vapor pressure (underpressure)

and the amount of this underpressure, are functions of velocity.

It may not be unreasonable to assume that the gross cavitation

pattern is largely controlled by the nucleation process. It

is conceivable that the nucleation process may depend upon time

of exposure to underpressure and absolute value of this under-

pressure in such a way that the effects are not cancelled for
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constant cavitation number. With systematic experimental studies

of different liquids flowing through various pressure distributions,

it may be possible to obtain a reasonably correct Kio value or

trend for an arbitrary body and liquid by means of some relations

between underpressure and relaxation time (time fluid remains at

pressures below the vapor pressure before cavitation occurs). Also,

a method is needed to accurately predict the conditions at the po-

sition where cavitation starts for limited and profuse cavitation.

In the literature reviewed there is a total absence of experi-

ments related to the cavitation phenomenon for flow in bends. Most

of the conduits in hydraulic machinery where cavitation occurs are

curved. There are no clear ideas as to what actually takes place

under such conditions. What portion of the flow is actually

vaporized is of interest. Also, it would be interesting to see

how compound liquids (petroleum oils) behave under cavitating

conditions.
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CHAPTERV

Previous Investigations on Bubble Dynamics

Introduction

Bubble dynamics is the study of bubble growth and collapse. The

primary variables affecting the growth and collapse are-- the type of

liquid around the bubble, the temperature and pressure fields in the

liquid and inside the bubble, and the type of gas inside the bubble.

In this report only the single component, liquid-vapor phase will be

considered.

A knowledge of bubble dynamics is useful in the correlation of

heat transfer data in the boiling regime and in the prediction of

cavitation in a flowing system. The cavitation problem is presented

in detail in another section of this report° The application of bubble

dynamics to heat transfer correlations is reviewed at the end of this

chapter.

The theories on bubble dynamics are considered in three main groups:

io growth in a superheated liquid, 2. collapse in a subcooled liquid,

3o growth in a non-uniform temperature field.

Since experimental verification of the theories on bubble dynamics

has been limited to the asymptotic growth phase, the theories are con-

sidered for this phase onlyo
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5.2 Bubble Growth in a Superheated Liquid

Rayleigh [98] developed the equation governing the motion of the

bubble wall in growth and collapse of a bubble:

It is possible to solve this equation for constant vapor pressure, Pv'

by numerical methods and by repeated application of gamma function so-

lutions. However, when a vapor bubble grows, the latent heat of vapor-

ization must be supplied at the liquid-vapor interface by the liquid

around the bubble. The resultant drop in liquid temperature reduces

the growth rate of the bubble. A vapor bubble in a superheated liquid

can be expected to grow without bound as long as there is superheat in

the liquid to provide latent heat of vaporization.

The pressure in the bubble is not a constant since the temperature

at the liquid-vapor interface may vary. The vapor pressure is taken,

in all cases, to be the saturation pressure associated with the temper-

ature at the bubble wall.

There have been several methods applied to the analytical solution

of the bubble dynamics problem. Some assumptions identical in all

approaches are:

i. The bubble is spherical in shape.

2. The pressure field in the liquid is known.

3. The temperature field in the liquid is known.

4. The surface tension pressure is 2 --_- .

5. The liquid and vapor are pure.

6. Fluid motion is irrotational.
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7o Viscosity effects are neglected.

8o The liquid is incompressible.

9. Thermal conductivities and specific heats are constant over
this temperature range.

i0o Bubble wall velocity equals liquid velocity at the wallo

ii. Bubble wall velocity is small compared to sonic velocity in
the liquid.

12. The vapor pressure and temperature are uniform inside the
bubble.

13° The vapor inertia is neglected.

Where these assumptions are applied to the continuity equation and

the equation of motion, a differential equation for the radius of the

vapor bubble is determined:

Equation (5.2) is the starting point for all analytical solutions.

Variations in the theories result basically from the way in which the

bubble wall temperature (and therefore vapor pressure) is determined°

Ao Plesset-Zwick Approach

Zwick [99] solves Equation (5.2) using the liquid temperature,

determined from the energy Equation (5.3_ to find the vapor pressure_

He used boundary conditions on Equation (5.3) as follows:

(5°3)

(5°4)
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and

%. (5.5)

The mathematics of solving Equations (5.2), (5.3), (5.4) and (5.5)

together is presented and the bubble radius is given for four phases of

bubble growth. The phases are arbitrarily selected by gwick and are

called: delay period, early phase, intermediate phase, and asymptotic

phase. The phase classification depends upon which physical variables

may be neglected for a given range of values. Zwick uses the physical

properties of water to explain which terms may be neglected.

Plesset and Zwick [i00] give an alternate solution to Equation

(5.3). They consider the temperature change in the liquid to be con-

centrated in a thin boundary layer around the bubble and treat the

problem as a nonsteady heat diffusion problem. Then in reference [I01]

they use the temperature distribution of reference [I00] to solve the

bubble dynamics problem. They use the relationship

= A (T- IO_) (5.6)

where A is a constant and T from reference [I00]

is the heat source per unit volume and D = k/0C.

_X. (5.7)

Plesset and Zwick [102] give the asymptotic solution for a vapor

bubble in a superheated liquid. The solution is the same as the one

given in reference [i01], but this analytical approach is compared with

experimental data. The bubble growth rate is proportional to the square

root of time:
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R=Ro (5.8)

Plesset [103] discusses the validity of some of the assumptions

made in the analytical solution given. He gives expressions to be

used in assessing the error resulting from assuming that the vapor

pressure is uniform and that the wall velocity is the liquid velocity.

These expressions give a very good feel for the order of magnitude of

the terms involved°

B. Forster - Zuber Approach

Forster [104] gives a mathematical solution to Equation (5.3)

with no heat generation (i.e., q = 0). He assumes that the motion of

the bubble wall R = R(t), is a known function° The boundary conditions

He obtains anare either constant temperature or vanishing heat flux.

approximate solution of the original problem by solving

where R(_) is an appropriate mean value = J R(x) R(t). He explains

that the second term in this equation vanishes at x = t; and, when dT

becomes small, neglecting the second term will result in small error°

Therefore this term is neglected and the resultant solution is

6

E Oro.)v 8c×) (s.9)

Forster and Zuber E105] solve Equation (5.2) by using the Clausius-

Clapeyron relation

'r
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Then T - T is found from the solution of (5.9). In addition,
V S _S

3 _2 2u
when R > R ° the terms R R + --_- + may be neglected when

_LR v

compared to (Pv - P_/PL" These terms are the hydrodynamic terms. For

a growing vapor bubble in a superheated liquid the solution of Equation

(5.2) with (5.9) and (5.10) need be completed only for a time interval

from zero to one millisecond and then the hydrodynamic terms may be

neglected. This solution also gives the bubble growth rate proportional

to the square root of time.

Zuber [106] considers the problem of bubble dynamics in both a

superheated and a subcooled liquid. He starts with a heat balance

g_

for a uniformly superheated liquid. The heat transfer coefficient,

h, was determined from the one-dimensional transient heat conduction

problem.

(5.11)

(5.12)

Then,

- 1 K(n-n)
h (To-%)-- I<\_.a7_-o- "_(o,-_)' (5.13)

The solution of Equations (5.11) and (5.13) agrees satisfactorily with

experiment.

Co Birkhoff, Margulies, and Horning

The above authors in reference [107] assume the solution of

Equation (5.3) to be of the form:
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where

This implies that the bubble growth rate is K.1(at) ½. KI is a

dimensionless parameter. Equation (5.3) with (5.14) and (5.15) gives

S
=0

This solution to Equation (5°3) is then of the form

A and B are constants and FK(S) is defined:

For one particular range of the dimensionless parameter, K_, this

solution gives the result

\71 7

This is the asymptotic growth rated equation determined by Plesset

and Zwick for a uniformly superheated liquid. However, other ranges

of K_ give other asymptotic solutions.

Do Bankoff and Mikesell

Reference [108] considers Equation (5°2) where Pv and p=

are constant (the Rayleigh solution) and compares it with experiment°

Then the authors solves the same equation allowing p_ to vary the

(5.14)

(5°15)

(5.16)

(5.17)

(5.18)

(5.19)
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way it would in cavitating flow. The analytical solution of Equation

(5.2) with Pv constant is used to fit the experimental data.

E. Scriven Approach

Scriven [109] considers the growing vapor bubble in an infinite

medium of uniform superheat. He considers the growth to be controlled

entirely by the transport of heat and matter across the bubble boundary.

He states that the solutions presented above are valid only over re-

stricted ranges of pressure and superheat. His solution is exact under

the assumptions made and is adequate for all but the earliest stages

of bubble growth. He lists assumptions which are substantially those

of the beginning of this section. He arrives with Equations (5.2) and

(5.3) by considering the continuity equation, equation of motion, and

energy equation. The exact solution to Equations (5.2) and (5.3) results

from neglecting the hydrodynamic terms. His exact solution reduces ap-

proximately to those of Forster-Zuber and Plesset-gwick, depending upon

the growth constant, 9*. Where 9" is defined

(5.20)

Figure 5.1 is a comparison of Scriver's solution and the approximate

solutions:

I !
2Z_ "P k"_ {_'-----.- 0 (5.21)

0 (5.22)
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Yang and Clark [ii0] solve Equation (5.3) neglecting the term

• VT. The solution is almost identical to that of Forster-Zuber

but a coefficient of bubble growth given by Scriven is again intro-

duced and the final solution depends on the selection of _*. This

development is compared in a chart like Figure 5.1 to the solutions

of Scriven and Plesset-gwick. Plesset and Zwick's solution is a

closer fit to the solution of Scriven than is the theory of Yang and

Clark.

At a conference on bubble dynamics [iii] Forster and Zwick dis-

cussed the merits of their two respective theories. The general con-

clusion reached was that the Plesset-Zwick theory could be as accurate

as desired, depending only on the order of approximation; but that the

first-order approximation in effect reduced the boundary layer to a

thickness of zero and thus eliminated the convection term. The Plesset-

Zwick solution requires the evaluation of twenty-two coefficients while

the Forster-Zuber solution requires only two.

For all of the analytical solutions presented above, only the

asymptotic growth phase has been studied experimentally because only

in this phase of the bubble growth does the bubble become large enough

to photograph easily. The following experimental work has been done in

verifying the analytical approaches.

Degarabedian [112] observed bubble growths in superheated water,

carbon tetrachloride, benzene, ethyl alcohol, and methyl alcoho_ and

found their growth rates close to those predicted by the Plesset-Zwick

theory. The same author in reference [113] gives more details on water

with the same result.
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Parmentier and Schwemin[114] found that the Plesset-Zwick and

Forster-Zuber theories were adequate in predicting the bubble growth

in liquid hydrogen. The data of Ellion [115] for superheated water

is also correlated by these theories.

Bubble Collapse in a Subcooled Liquid

Onereason for considering the bubble collapse separately from

growth is that for manycollapse problems heat transfer effects may

be neglected and the heat Equation (5°3) need not be solved. (See

[I01]. Florschuetz and Chao [116] examine the relative importance

of the effects of heat transfer and liquid inertia on collapse. In

highly subcooled liquid the liquid inertia terms dominate the collapse.

For this case the vapor pressure does not change from its initial

value.

For very small subcooling of the liquid, the collapse process

is very slow and the vapor pressure equals the external system pressure.

This results in purely heat transfer controlled collapse°

Betweenthe two extremes the contribution of both heat transfer

and liquid inertia must be considered° For a subcooling of 78° C in

water, the heat transfer effect maybe neglected with almost no error

E101]o

Plesset and Zwick [i01] also present a solution for the case

where heat transfer effects must be considered° The solution involves

the numerical integration of four equations given in Chapter 8. If

the experimental results from the present investigation show that the

Rayleigh solution does not apply_ then the equations of [i01] may be

solved for better correlation_
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Bankoff and Mikesell [108] considered someexperimental work of

Ellion and found that the Rayleigh equation could be applied to the

collapse with little error. This subcooling was 35° F.

McNieto [117] gives a power series solution of the Rayleigh

equation for the collapse of a vapor bubble. This is valid for a

zero vapor pressure. Numerical solutions in tabular form are pre-

sented.

Levenspiel [118] considers the Rayleigh solution in the form:

'f of t
R° = radius at start of collapse

He then includes the effect of residual permanent gas. However,

except for this case the vapor pressure is assumed zero. The com-

parisons are plotted for visual observations.

Fritz [119] presents the integration of Equation (5.23) using

gamma functions. The variables R/R ° and

are presented in tabular and graphical form. For each value of

R, the time from the start of collapse can be determined using this

table or graph and Equation (5.23) along with values of R and
o' PL'

F.

The experimental works of Florschuetz and Chao [116] and Levenspiel

[118] indicate that there is some heat transfer effect at subcooling

of 30 ° F or less in water. It seems that more experimental work is

(5.23)
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needed in this area° It must be pointed out that the Rayleigh equation

is not valid near the point of vanishing collapse since this equation

does not include the surface tension term.

Growth in a Non-Uniform Temperature Field

In heat transfer problems the heat is normally transferred to the

liquid from a solid boundary. This solid boundary sets up a non-uniform

temperature field in the liquid. Since all of the theoretical approaches

considered thus far have concerned only uniform temperature in the liquid,

additional boundary conditions must be applied to the previous theories.

A. Forster and Zuber

Zuber [106] extended the Fritz-Ende equation to include

the effect of a non-uniform temperature at a solid surface by adding

a term_ qb' corresponding to the heat transferred from the heating

solid to the liquid.

%_ (5.24)

Zuber suggests the modified equation to use in correlating data:

Lv
(5°25)

Forster [120] shows that another way to account for the non-uniform

temperature field results by considering an exponential temperature dis-

Here x is the distance
-x/H

tribution of the form T = T=ot (Tw - T ) e

from the wall where the temperature is I/e of the total change° Then

for R << H
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I and for R >> H

Lv

This seems to indicate the correct power law for the experimental data

of Staniszewski [134] and Griffith [121].

B. Griffith

In [121] Griffith assumes a linear variation of temperature

from the heating surface to a boundary layer depth into the liquid, b.

He gets two sets of differential equations and solves them by numerical

integration. All numerical solutions will not be presented in this

paper.

C. Savic and Goshell

These authors in [122] consider both linear temperature

distribution from the wall and radial from the bubble. These results

are in fair agreement with the numerical results of Griffith. This

was also a numerical solution.

D. Dougherty and Rubin

Dougherty and Rubin [123] correlate experiments according

to an asymmetry ratio, tm/tc, (where t = time to maximum bubblem

radius and t is total bubble lifetime) For linear temperature dis-c

tribution from the wall, no surface tension effects and no viscosity

effect,
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where:

R = Bubble radius at start of asymptotic growtho

R = Maximumbubble radius
m

R = Radius at nucleation
n

R = Radius of isothermal bubble
r

The integral is made stationary using the calculus of variations and

from this stationary curve

Dougherty and Rubin checked Equation (5.28) with the data of Ellion

and found close agreement. However, in most of these cases the

mathematics involved is certainly complicated enough to be avoided

when possible. The Zuber correlation seems to involve the least

amount of complications.

G_mther [124] did some experimental work with water. This data

was considered by Zuber but was not included in Zuber's article.

Ellion ELI5] performed experiments on subcooled boiling and

this data was considered by all the papers presented on the non-

uniform temperature approach. All claimed fair agreement.

The following references are for experimental work in surface

boiling_ [125], [126], [127], [128]: [129]o Comparison to theory

was not possible for many of these references°

(5.27)

(5.28)
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5.5 Correlation of Boiling Heat Transfer Data

Engelberg-Forster and Grief [130] correlated boiling heat transfer

data in terms of AP (i.e., Pv = P_) taken from Equation (5.2) and

found one form of correlation that fit their experimental data. The

equation is

Nz, J tkl
Costello and Tuthill [131] experimented with superheated water

under the effects of acceleration and found that only Equation (5.29)

was satisfactory in correlating their data.

Forster and Zuber [132] show that the product of bubble radius

and radial velocity is a constant and formulate a Reynolds number

for flow in the superheated liquid near a heating surface. This

Reynolds number becomes:

They use this Reynolds number in correlating boiling heat transfer

data and get:

(5.29)

(5.30)

1/v_en.?' ?/ a9 '

For n-pentane, benzene, ethanol, and water this correlation reduces

to

o,_z n o._3
Nv = 0.00/_ _e r_- .

(5.31)

(5.32)

Equations (5.31) and (5.32) gave good experimental fits for the data

of these liquids.
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Zuber and Fried [133] state that in pool boiling the Forster-

Zuber correlation _Equation (5o31)_ is valid for cryogenic fluids°

It is also shownthat the correlation Equation (5°29) is identical

to Equation (5.32)°

Summary

The fact that the analytical solutions are not consistent with

each other and do not completely correlate the experimental data indi-

cates that morework must be done in this field_ However, the analytical

solutions are accurate enough to be used in indicating the behavior of

vapor bubbles°

The problems of non-spherical shape and non-equilibrium liquid-

vapor conditions should be considered in future analytical studies°

The best pool boiling heat transfer correlation equations are

based on the parameters involved in the bubble dynamics solution.

The equations governing bubble dynamics apply in the prediction

of the growth and collapse of vapor bubbles in cavitating flowo The

prediction of when a bubble will form is not possible from these bubble

dynamics equations°
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6.2

CHAPTER Vl

Theoretical Investigation of Single-Phase
Conduit Models

Introduction

The purpose of this chapter is to give a detailed presentation

of the theoretical investigation which has been performed concerning

the dynamics of single-phase fluid conduit models. Linear and non-

linear treatments are presented with attention being given to the

effects of system accelerating and vibrating forces.

Exact Solution of the Linearized or First-Order Axisymmetric Navier-

Stokes Equations

In Chapter II it was revealed that the Navier-Stokes equations

may be linearized to give the form (see Appendix B for summary of

vector notation)

o- _, _ _vCT-_)-_c_lI _

where v

system by

is the vector velocity given for an axisymmetric coordinate

9- Fv_ + Kv_ (6.2)

with _(_ and _ being the unit vectors in the r and z directions

respectively. See Figure 2.1.
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The first order continuity relation for a liquid maybe written in

ventor form as

Nowlet's define a scalar potential _ and a vector potential _ such that

If we take the divergence of (6.4) we have

(6.3)

and also taking the curl of (6.4) yields

W_-- W (w_) =

The vorticity vector _ is defined as

so that _ and _ are related by

(6.4)

¢- ?)-v'F.

(6.5)

(6.7)

(6.8)

For axisymmetric flow _ has only a component in the direction perpendicular

to r and _ , thus in the _ direction. It is necessary that _,have only

a _ component also, as is obvious from Equation (6°8)° We therefore write

and now since

( 6.i0)
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we have from Equations (6.6), (6.8), (6.9) and (6.10) that

(6.11)

In summary then we see that the divergence of the velocity vector is

related to _ by Equation (6.5) and the curl of the velocity vector, also

referred to as the vorticity, is related to _, for axisymmetric flow, by

Equation (6.11).

If we take the divergence of Equation (6.1) we eliminate the vorticity

since the divergence of a curl is zero, and thus

(6.12)

Substitution of (6.5) into (6.12) yields

(6.13)

or

(6.14)

From Equations (6.3) and (6.5) we have also

(6.15)

Taking the partial derivative of (6.14) and substituting

(6.15) gives

5Pl_t from

(6.16)

If we take the curl of Equation (6.1) we have

(6.17)
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or

(6.18)

or, after expanding the right side of (6o18)

(6.19)

From Equations (6.9) and (6.10) we see that

be reduced to

V • (_) = 0 thus (6.19) may

_ _7_ (6.20)

or

_
(6.21)

Physically, Equation (6o16) is a viscous wave equation for plane or one-

dimensional waves, thus _ is a viscous plane-wave potential function.

Equation (6.20) is a vorticity diffusion equation.

Applying the Laplace transformation to (6.16) and (6.21) yields (assuming

initial conditions zero)

(6.22)

and

(6.23)

where _ and _ are the Laplace transformed quantities°

Solving Equations (6°22) and (6°23) by the method of separation of

variables (see Appendix C) yields
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where A and B are constants of integration and _ Is the separatlon

constant. 3o([Br) and 3i (Kr) denote the zero and £11"gt-order Bessel

functions of the first kind with arguments'_r and Kr respectively

(See Figure 6.1), Also

(6.24)

(6.25)

t_==,7_- s,/-a-=
(6.26)
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and

Nowthat

or

we have

where_r denotes

and

obtained _ and _ we may obtain _Z

the transformed velocity vector° Since

=

(6.27)

from Equation (6.4)

(6.28)

(6.29)

(6.30)

Equation (6.28)

We may

and

becomes

_- y- °

now wr it e

_=

(6.31)

(6.32)

(6.33)

In Equation (6°32) and (6.33) we have implied the equality of the y's

from Equations (6.26) and (6.27), thus

S _

At this point let us calculate the pressure, thus from (6.3) and

we have

(6°34)

(6.25)
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8

(6.35)

(6.36)

Equations (6.32), (6.33) and (6.36) are the simultaneous solution to the

first-order axisymmetric Navier-Stokes Equation (6.1), and the continuity

relation, (6.3). The constants of integration A and B and the separation

constant y are to be determined from the boundary conditions. The con-

ditions st the pipe wall are that the fluid velocities and pipe wall

velocities be equal and also that the pressure be continuous. In the

sections that follow, the boundary conditions will be applied for the

following cases:

A. rigid pipe,

B. elastic pipe with flexible walls,

C. elastic pipe with stiff walls.

The limiting conditions which apply to this solution are:

Ao the fluid velocity at any point and time is much less than the

velocity of sound in the fluid, thus justifying omission of the

nonlinear terms,

B. changes in the density p are small in comparison with the

average density Po,

C. temperature effects are negligible,

D. the flow field is axisymmetric.

Application of Exact Linear Solution to Case of Rigid Pipe

We will now apply boundary conditions to Equations (6.32), (6.33) and

(6.36) for a fluid conduit with rigid walls. For this case we require
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that both the radial and axial velocities go to zero at the pipe wail0

Applying these conditions to Equations (6°32) and (6°33) yields

and

(6°37)

_4_o_f_ + _ _O_Y_)= 0 . (6°38)

Solving for A from Equation (6.38) and substituting into (6.37) gives

_ __]_) _ --_/2 _-IC_)._____._• (6.39)

The simultaneous solution of Equations (6.26), (6.27) and (6.39) will yield

the allowed values for _, _, and y. The exact solution of these relations

would be rather laborous; but, fortunately, we can obtain very good approxi-

mate values. To get an idea of the range of values we are working with,

consider first the case of no viscosity. Here the allowed values for _nro

are

_nro = 0, 3.8317, 7.0156, 10.1735 (6°40)

which shows that _ is multivalued. Each value of _n (except _o)

corresponds to a mode of radial vibration. The zeroth mode (B = _o) c°rre-

sponds to the primary or longitudinal mode of the conduit° The values of

_n as given by Equation (6.40) are only valid for the case of no viscosity;

but, even so, an interesting observation may be made concerning the various

modes of propagation° Consider the value of the propagation constant

from (6.27) for the case of sinusoidal disturbances or

r_o . (6,41)
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I

If _ is imaginary then the wave will propagate with the velocity w/_.

If _ is real we have pure attenuation. We see then that the n'th mode

of vibration will propagate only when

w > 8nCo .

The frequency defined by 6nC o is a cut-off frequency below which no

propagation will occur for the n'th mode.

Considering again the case with viscosity we will now get a more exact

solution to Equation (6.39) for the zeroth mode than that of the inviscid

case. In our first analysis we found that 6o = 0 (zeroth mode). For this

more exact analysis we will assume instead that 6o is very small so that

we may approximate J_(6oro ) and Jo(6oro ) by their small argument values.

Therefore assume

and

(6.42)

Substitution of Equations (6.42) and (6.43) into (6.39) gives

-- k._'o_o C_°to)
(6.44)

or, by substituting Equation (6.44) into (6.34) we have

10

i- 2 :r, C_°ro)

where now

(6.45)

for the zeroth mode propagation factor.

We have thus obtained a good approximate value

The accuracy of the approximation
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depends on the accuracy of the representations given in Equations (6.42)

and (6°43).

The zeroth mode transformed axial velocity and pressure may be written

from Equations (6.33), (6.36), (6.37) and (6.38) as

1 -oC o 'l

and

Applying the approximation of Equation (6.43) to (6.46) yields

and similarly for (6.47), using (6.34) and (6.43) gives

If we consider the response of the zeroth mode velocity to a sinusoidal

pressure gradient then we find that the time domain velocity may be

expressed as

where the pressure gradient is

For values of the parameter

dt)
_'_=

(6.46)

(6.47)

(6.48)

(6.49)

the velocity profile is essentially

parabolic while for values greater than 5 the profiles begin to look like
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those shown in Figure 6.2. Notice that in the figure the fluid near the

edges of the pipe responds more quickly than the fluid in the center of

the pipe. This phenomena is called '_ichardson's annular effect" and is

discussed, for example, in Schlichting [2].

Figure 6.2 Velocity Profiles of Zeroth Mode

for Pulsating Flow in a Pipe

Thus far we have concerned ourselves with the discussion of only

the zeroth mode of propagation , or, also called the fundamental or

longitudinal mode. What about the effects of the higher modes? The

calculations involved in working with the higher modes is very cumber-

some; but, fortunately, for most conduit dynamics applications the

effects of these higher modes appear to be negligible. For this reason,

all further discussions will deal with the zeroth mode unless otherwise

specified.

It is important to distinguish the modes of propagation being discussed

here from the concept of frequency modes. Each of these modes of pro-

pagation can, in general, have an infinite number of frequency modes.
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6°4 Derivation of Transfer Equations for Rigid Fluid Conduit

It is desirable to derive from Equations (6.48) and (6.49) a set

of transfer equations which will describe the average conditions at some

point z along the conduit in terms of the average conditions at z = Oo

In the previous section we found the zeroth mode axial velocity and

pressure to be expressed as in Equations (6.48) and (6.49) or

and

(6.48)

(6°49)

Since we have agreed to discuss only the zeroth mode unless otherwise

specified, we will hereafter omit the "o" subscripts which refer to the

zeroth mode° If we average Equation (6.48) across the conduit cross-

section we have

and

(6.50)

(6o51)

Up to this point we have considered _, for convenience, to have only

positive values; but, in general, it will have both a positive and a

negative value.

the negative z

in the positive

to i_clude positive and negative values for

Positive values of y indicate waves progressing in

direction and negative _'s indicate waves traveling

z direction° Rewriting Equations (6°50) and (6o51)

yields
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i

I

and

(6.52)

(6.53)

The boundary conditions which we wish to satisfy are

and

Substitution of these boundary conditions into Equations (6.52) and

(6.53) gives a pair of equations from which B I and B 2 may be found.

Substituting these values back into (6.52) and (6.53) yields the transfer

relations

(6.54)

and

(6.55)

where

$ (6.56)

Equations (6.54) and (6.55) are then the zeroth mode transfer equations

relating the average transformed conditions at some arbitrary z to the

average transformed conditions at z = O. We may rewrite these relations
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in another convenient form relating the conditions at some other position

2 where 2 is oriented a +L distance from I. This form is

and

(6.57)

P, s' P. (6.58)

It is convenient to omit the bar notation, which denotes the average

condition, while still keeping in mind that we are dealing with average

va lues°

The quantity

lated to y by

r appearing in Equations (6.57) and (6.58) is re-

(6.59)

and is often called the propagation operator. In Chapter II it was

noted that y, the propagation constant, consists of a real part and

an imaginary part, or

We may therefore write

(6° 60)

Figure 6.3 shows the variation of Fr with frequency number (_0L/Co)

for various values of the damping number (_L/c r _)o Figure 6 4 shows
O O °

a plot of the ratio c/c ° versus frequency number with damping number

variable.
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We will now explore the application of the transfer relations in

solving typical problems.

6.5 Application of Rigid Fluid Conduit Transfer Equations

Now that we have obtained a set of relations describing the average

transformed conditions at two axial positions in a rigid fluid conduit,

let us consider the use of these equations in solving two example pro-

blems.

Example Problem I

Consider a fluid conduit with length L and inner radius _o

terminated at end i by a constant pressure source such as a large

reservoir; see Figure 6.5. The other end of the conduit is terminated

L

Figure 6.5 Diagram for Example Problem I

by an oscillating piston. We desire to obtain a plot of the pressure

ratio Ps/PCoVsversus frequency, where 102 and vQ are the disturbance

pressure and velocity. We recognize that P_ = 0 since the reservoir

has a constant pressure, hence, no disturbance pressure. Applying the

transfer relations (6.57) and (6.58) to this case gives
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and

thus

(6.61)

Equation (6.61) represents the Laplace transform of the ratio _e/v 2.

From linear transform theory we know that

(6.62)

where _ is the phase of P_/%1_ _,=l,,=e=A _ e = =........ ... ............. j_. ,= can therefore

find the information desired by calculating IPa_IS:j . A plot of this

ratio is shown in Figure 6.6.

Example Problem II

We will now investigate the response characteristics of the volume

terminated fluid line shown in Figure 6.7. Here we have a conduit

terminated at one end by a sinusoidal pressure generator and at the

i _I

Figure 6.7 Diagram for Example Problem II
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other end by a volume receiver° We will treat the volume as a pure

fluid capacitor so that from Equation (2o35a) we have

(6°63)

For this case it is convenient to write the pressure transfer equation

in an alternate form given by

R-- P2 COS_ F+ Vz _,c. 5_/_ . (6,64)

Substitution of (6°63) into (6°64) to eliminate V_

or

yields

(6°65)

Evalnating (6o65) for S = j_ and calculating the absolute value of

the resulting complex number gives I P2/P_I.

The example problems presented here are very simple and the cal-

culations involved are easily achieved with a digital computer° More

difficult problems involving frequency domain calculations involve

very little more effort and are also easily solved with the aid of a

¢ompu_ero The utility cf these equations for _se in solving frequency

domain problems cannot be ever emphasized° An aid which may be fruit-

fully employed in problem formula[i.cn is the matrix method discussed

in Secti, o_ 2°4°
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6.6 Conduit Wall Effects

The purpose of this section is to outline the analytical approach

to the problem of determining the effects which nonrigid walls have

on the transmission properties of a fluid conduit.

Basically, there are four types of conduit walls:

a) Rigid walls - Those walls which are assumed perfectly rigid

and do not give under the influence of a pressure force.

This type of wall has an infinite radial impedance, i.e.,

_/v r = =.

b) Pressure release walls - Those walls which just contain the

fluid but exert no force on the fluid. This type has a

zero radial impedance.

c) Elastic flexible walls - Those walls which give under

pressure and have some finite radial impedance but do

not propagate a disturbance in the axial direction.

d) Elastic stiff walls - Those walls which have a finite

radial impedance and do propagate a disturbance in the

axial direction.

We have already developed the mathematical relations describing

the pressure and velocity for a rigid fluid conduit. We now proceed

with the description of the elastic flexible and elastic stiff cases.

Elastic Flexible Walls

If we are studying the dynamic characteristics of fluid-filled

elastic tubes, such as rubber, where the major effects are those due

to tube inertia and tensile stress in the wall, then the equation of

motion for the tube is [45]
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where

h = tube thickness

r = tube radius
O

Et = Young's modulus for tube material

6 = wall radial deflection
r

Pt = fluid pressure at tube wall

Applying the Laplace transformation to Equation (6°66) gives

(6,66)

or

A A

(6°67)

In terms of the radial velocity, (6.68) becomes

(6,68)

or

Since the radial impedance for the pipe wall must equal that of the fluid

at the wall we may now write (assuming zero impedance external to the

pipe wall.) from Equations (6°32) and (6°36)

(6.69)
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or

Using (6.70), it is possible to solve for the allowed values of

which will dependon the parameters of the right side of the equation.

Knowing _, the transfer equations could then be derived as was done

in previous sections.

Elastic Stiff Walls

The approximate equations of motion for a thin-walled pipe as

given by Lin and Morgan [29, 46] are (neglecting rotary inertia)

(6°70)

and

where the tube axial and radial particle displacements are given by

the perturbation equations

__(',-,_,_)--_g_,-_).,- (,r'o-_)_::_,-d

and
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By transforming these equations of tube motion and assuming solutions

of the form ^ _

where ^ indicates transformed quantities, we have, after eliminating

6z and _oO

i

i2 _C-

i-_/_o
and _ C_ _

_ d-_0 '
Solving for the radial tube impedance gives

sg_ _ sq_

From Equation (6°69) we have seen that the fluid radial impedance at

the wall is given by

I_ order for the radial impedance to be continuous at the wall_ we

must have the tube and fluid propagation constants equal (_ = _t ) and
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[

[

[ or

A

Solution of (6.72) will yield the allowed values of _.

At this point there are two ways in which we may solve for V Z"

We may either neglect the pipe axial motion and assume that the fluid

axial velocity is zero at r or we may assume that the fluid ando

pipe axial velocities are equal at the wall. The first approach is

by far the simplier of the two and would probably not give great errors

except in cases where one end of the pipe were free to move and also had

a high impedance.

The major effect which flexible walls have on the transmission

characteristics in a viscous fluid is to alter the propagation velo-

city as depicted in Figure 6.8. Also see Figure 2.16.

i

• {_ I _-- ,,t ,_ooE

/ _ I ---- l_,q,'rl_ FLWX_i_JI PIP! "| , , t

_ t _ ....... _ f,,Im,6.e. _ _,_._._

1; ! _
/_ ; ' \

i- /;o.,_.-,;, k \ \

,/, S_ ----....... .............
: /./ .... .........

Figure 6.8 Phase Velocity Versus Frequency for
Several Types of Conduit Walls

(6.72)
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6°7 Effect of Nonlinear Terms

In Section 2.7 we discussed, to someextent, the problems associ-

ated with analytical investigations of fluid conduits where somecon-

sideration must be madeof the nonlinear terms of the equations of

motion° At this time wewill present a solution of the governing

equations for Case i of Section 2.7, ioe°, the case where there is

a large steady flow componentbut the perturbation or unsteady _low

componentsare small° Weassumefor the fluid velocity (axisymmetric

flow)

where v represents the steady axial velocity component, v
zo r_

represents the radial unsteady velocity componentand v is the
zI

axial unsteady component° v is the steady vector velocity ando

vI is the unsteady vector velocity. Making our usual assumption

of a semi-compressible fluid, i.e., a fluid whose density is time

but not spatially dependent, we maywrite for the equation of motion

(calling Vzo simply Vo)

and for the continuity relation (including equation of state)

(6°73)

v. o
_--_t = . (6°74)

It is convenient at this point to separate the velocity as
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(6.75)

where _ represents a scalar field and $I a vector field. If we

now take first the divergence and then the curl of Equation (6.73)

we have, respectively

and

(6.76)

(6.77)

or, since

Equations (6.76) and (6.77) as

and

7 • v 1 = _0 l and Vxv1= -Ve_l,($1 = @ _) we may rewrite

(6.78)

D-@- - (6.79)

At this point we must make some considerations of the terms in Equations

(6.78) and (6.79). Physically, _ is a scalar potential for the plane

wave propagation and $_ is a function associated with the vorticity

field. In order to be able to easily work with the terms 7 • (Vo_V_/_z)

we need to assume that v ° is constant even though mathematically it

is some function of r.

What we are going to do is assume that v is constant over the
O

cross-section so far as Equation (6.78) is concerned. Since _: is
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associated with the vorticity, this indicates that it will have a

significant value only near the wall where we can assume v is
o

zero° Thus, so far as Equation (6°79) is concerned v = O. We
o

may now reduce Equations (6°78) and (6.79) to

(6.80)

and

<_w,__v_
(6o81)

Applying the Laplace transformation to Equations (6.74), (6.80) and

(6o81) and solving_we obtain

cp, : 3-o(_) A,

and

where _ and _ are the transforms of

y_ are solutions of

and _l " Also _ and

and furthermore

_:,v '2_ s//m-.

(6°82)

Now for the transformed velocities, we have

+'?+ f+'
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and

Zeroth Mode Transfer Equations for Rigid Pipe

We want to proceed now to develop the transfer equations for a

rigid pipe which has a steady flow component v plus a perturbationo

component v1(t) which is an average for the cross-section. For the

zeroth mode of propagation, we proceed with the application of boundary

conditions to Equations (6.83) and (6.84) which require the velocity

identical to those of Section 6.4 given by Equation (6.44) thus

(6.84)

, (6.85)

Substitution of Equation (6.85) into (6.82) yields a quadratic in

(zeroth mode only)

I I_' i _o_o_.o_ __,_ - _o__ =0 °

Solving for

whet e

from the above equation gives

f 2 0-_(k_) t
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and

E

If the relation for axial velocity is averaged over the cross-section

and the averaged pressure is calculated from the continuity relation

we obtain

V= C,e , C_e

and

_
Applying the conditions V_(s) and P_(s) at z=0 leads to the

transfer equations given by

and

where

.._L[

L
(6.86)

P2($'_= _tf°'Lf_[_)I_bsOv_l'ylbL

(6°87)
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Equations (6.86) and (6.87) are now the desired transfer equations

relating the variables of a four-terminal fluid conduit such as

shown in Figure 2.5° It is important to note that if we let v =0
o

then these relations reduce identically to the standard form as

given by Equations (2.23) and (2.24).

Figure 6°9 displays a plot of the frequency response Log

IVl (o)/V I(L)] for a pipe with constant pressure at z=O and a

"disturbance generator s' at z=L. V_(o) is the transformed velo-

city at z=0 and VI(L ) is the transformed velocity as z=L.

Note that the greater U ° (mean steady velocity) the smaller the

disturbance effect°

6.8 Effect of System Body and Vibration Forces

Consider a typical fluid system, such as the fuel system of

a rocket, which under normal operating conditions has imposed

accelerating and vibrating forces. We will adopt, for convenience,

a frame of reference which moves with the motion of the rocket.

Listed below are some of the accelerating and vibrating forces

which may be present:

i) A body force on the entire system due to the

acceleration of the rocket°

2) Vibrations of parts of the fluid system relative

to the motion of the entire rocket.

The analytical procedure for fluid conduits in the above cases

is outlined below°
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Body Force on Entire System

Now consider the effects which system body forces have upon the

fluid contained within the system. Writing the first-order equation

of motion for a viscous fluid, including a body force term, we have

in vector form

where

may be a function of both space and time.

sentable as

represents the vector body force acting on the fluid and

Assume that v is repre-

(6.88)

(6.89)

also

and

Taking the divergence of Equation (6.88) gives

(6.90)

(6.91)

- poIv' -v•

or, introducing Equation (6.90) yields

(6.92)
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Similarly, taking the curl of Equation (6°88) and substituting Equation

(6o91), we have (assuming axisymmetric flow)

(6°93)

Only if we can now represent F as

(6o94)

are we able to obtain a solution to Equations (6°92) and (6.93) in

this manner. If F is not representable as in Equation (6°94) then

we must use some other method. We are mainly interested in the case

where IF represents some time varying body force° If F is only

time variant then it may not be expressed as in Equation (6.95)°

For the case where F is only time variant we may easily

obtain a solution for the zeroth mode of propagation° The resulting

transfer equations are given by

and

where

resulting from the time variant body force

A(s) is the Laplace transform of the system axial acceleration

Relative Vibration of Parts of Fluid Ssty__

The most convenient method of solution in this case is to account

for the vibration effect by introducing it as a boundary condition on
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the fluid and omit the body force term.

Consider a fluid conduit in which the walls are undergoing some

axial motion as shownin Figure 6.10. v (t) is the velocity which
C

Figure 6.10 Fluid Conduit With Axial Vibration

the conduit wall attains as a result of the time variant body force.

In order to obtain a solution, we will apply boundary conditions to

a general solution without body forces in such a manner that the fluid

has the velocity v (t) at the wall. Thus, we are not considering
C

there to be a body force but rather a boundary motion.

In order to avoid some mathematical difficulties, we will only

discuss the zeroth mode for a rigid pipe at this time; thus we may

reduce Equation (6.88) for this case to

I

We will assume that for this mode the pressure is only a function

of axial position so that in Equation (6.95) it represents a forcing

function. A general solution in the Laplace domain is

(6.95)

(6.96)
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Applying the boundary condition V(ro,S ) = Ve(s) gives

(6.97)

Substituting (6°97) into (6°96) yields

We may now derive our standard transfer equations. If we average

Equation (6.98) and combine the result with the continuity equation

averaged over the cross-section, we obtain a second-order ordinary

differential equation whose solution gives the propagation constant

as

2_ (_"F,) IY;___<o::oCSVo)

(6.98)

which is almost identical to the form given by Equation (6.45) for

the zeroth mode. The corresponding transfer equations are

(6°99)

and

(6o100)

where
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and Z is defined by Equation (2.26). Notice from Equations (6.51)
C

and (6.52) that the effect of the system adds to each of the standard

form transfer equations a term which is porportional to V (s). If
c

we put V (s)=0, then the equations reduce to the standard form for
c

a conduit with no vibration

Example Problem III

Let us now apply the above transfer relations to the case of a

rigid conduit which is closed at one end and has a constant pressure

source at the other end. We also specify that the conduit experiences

an axial sinusoidal vibration such that its transformed velocity is

Vc(S) , Figure (6.11)

Figure 6.11 Diagram for Example Problem III

Applying Equation (6.99) and (6.100) in this case, we may obtain

-VcLS)
(6_ 101)

Equation (6.101) is now the transfer relation for the ratio of trans-

formed pressure at the closed end to the vibration velocity. This

example is similar to the problem of a vibrating piston in one end

of a stationary pipe with a constant pressure at the other end.
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Example Problem IV

Consider the fluid conduit shown in Figure 6o12, For this pro-

blem we have a conduit which is vibrating in the axial direction with

a velocity v . An orifice is situated in one end of the conduit.c

There is a constant pressure reservoir at each end with Pl being

greater than P3 and of such a magnitude to produce a steady flow

velocity v when there is no line vibration. We wish to determine
o

the pressure perturbation at point 2 due to the vibration of the line.

Writing the matrix representation for the transformed pressure

and velocity perturbation terms for the conduit we have (Pl = 0)

"0-o+_rI

Figure 6.12 Diagram for Example Problem IV

Assuming the orifice to have only a resistance to the perturbation

terms we may write
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where R = 2Kv .
O

V is the transformed vibration velocity• Com-
e

bining these equations leads to the relation

7_

If R is derived from the steady flow orifice equation, then

where Apo is the pressure drop due to the steady flow velocity

v . Table 6.1 _hnw_ _nm_ r_=l ,,=I,,== _ _ #......t _ Also

Cd APo(pSi ) dc/do R(psi-secft )

• 6 I00 4 3.64

• 6 i00 2 .882

•6 I00 i.5 .457

•6 500 i.5 I.02

Table 6. i

Figure 6.13 shows a plot of IFm/PoCoVcl versus Nf

for various values of N D (damping number) and R

and

Typical Values of R for Water

(frequency number)

where
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6.9 Lumped Parameter Models

In Section 2.5 we discussed the applicability of lumped parameter

models in solving conduit problems. It was stated that these models

are valid if the frequencies involved are less than about one-eighth

of the first critical frequency of the lumped element. This restriction

suggests a very convenient method of obtaining such a model if the

corresponding distributed parameter model is known.

Similarity Between Lumped and Distributed Models

Consider now the transfer relations (2.23) and (2.24) for the

case of low frequency, i.e., frequency low enough for a lumped model

to be valid. This means that Yo < _/16 so that we may approximate

cosh _oL and sinh yoL by the first terms of their series expansions,

thus

(6.102)

and

(6.103)

By a critical comparison of Equations (6.102) and (6.103) with the

relations for the fundamental lumped model, Equations (2.41) and

(2.42), we see that by neglecting some of the small order terms

the equations will be equivalent if

(6o104)
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and

Wehave seen, Equation (2.26), that

Equation (6.105) we must have

2Z =c PoCoYo/S, thus from

s_£=

(6.105)

which is correct, see Equation (2o35a).

(6o104) we see that we must have

Considering now Equation

$ (6.106)

Using the value of Yo for the two-dimensional viscous model,

Equation (6°45), we may rewrite Equation (6.106) as

(6.107)

If we expand the right side of Equation (6.107) in a power series

we have

(6.108)

_o _o(_r_)
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From Equation (6. 108) it is evident that we must have

Wehave now shownthat the transfer equations for the fundamental

lumpedmodel and a low-frequency form of the distributed parameter

model are approximately equivalent if R(v) is given by Equation

(6.109). This result suggests that we mayobtain lumpedparameter

models from all of our existing distributed parameter models by

simply writing them in approximate low-frequency form. This will

yield forms which are mathematically muchmore tractable and which

should be more easily inverted back to the time domain.

(6.109)
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7.1

CHAPTERVII

Theoretical Investigation of the Onset of Cavitation

Introduction

Whenthe stream pressure of a flowing liquid is reduced below

the vapor pressure, it becomespossible for a bubble to grow from

a small nucleus within the liquid or at the liquid-solid boundary°

The experimental evidence avai_ble (Harvey, McElroy, and Whiteley

[60]) indicates that permanent gas nuclei are necessary for the

onset of cavitation. These may, or maynot, have comeout of

solution on solid nuclei_ A third possibility exists when the

liquid contains solid particles that are not wetted by the liquid;

in this case, it is feasible that gas-free cavities maydevelop

on what are essentially solid nuclei° Whatever their modeof

origin, the bubbles will certainly gain vapor from the surrounding

liquid as they grow°

The experimental cavitation studies by Hammitt [91], Ruggeri

and Gelder [87], and others have proved that the formation and/or

collapse of bubbles, which were produced by decreasing the stream

pressure_ can be detected by audible meansbefore they become

visible° The tunnel operating conditions had to be changed once

an audible sound was detected before the bubbles could be observed

with the eye° This indicates that bubbles, formed by decreasing

the stream pressure, are very small during the early stages of
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7.2

growth. Therefore, we believe that a closer look should be taken

at the equation which describes the growth of small bubbles.

The rate of growth of a bubble, once formed, is controlled by

the surface tension, the liquid inertia, the liquid viscosity, and

the difference between the pressure within the bubble and the ex-

ternal pressure (pressure within the liquid). In the initial stages

of bubble expansion, the growth is slow but it is accelerated with

increase in bubble size because of a reduction in the surface tension

force and the decrease in stream pressure (for liquids flowing in

conduits). Whenthe rate of growth becomesappreciable, however,

the temperature and hence the pressure within the bubble drop and

the rate of growth is decreased.

Hydrodynamics of the Growth of Small Bubbles

During the following discussion we will consider a spherical

bubble growing in a viscous, incompressible liquid. The growing

bubble will generate a velocity field within the liquid which,

in turn, will generate a stress field tending to retard the bubble's

growth. The assumption of a spherical bubble is valid for small

bubbles since the force exerted by surface tension is large. In

order to further simplify the problem a model with constant fluid

velocity and no turbulence will be assumed. This model is similar

to the mathematical model being used in our studies with the Bubble

Chamber. However, in order to study someof the causes of cavitation

we must focus our attention on bubbles which are invisible to the eye°

The spherical symmetryof the situation makes it convenient to

choose a spherical coordinate system with its origin at the center
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of the bubble° The velocity field generated in the liquid by the

expanding bubble will have only a radial component Vr(r,t ) with

respect to the center of the bubble, where t is the time measured

from the instant of bubble formation. The pressure p at any point

in the liquid is also a function of r and t. Therefore, the

Continuity and Momentum equations may be reduced to

and

In Equation (7o2)_ PL is the density and _L the viscosity of

the liquid° Both are assumed uniform and constant.

At the bubble wall, the liquid velocity must equal R(t)

where a superimposed dot denotes ordinary differentiation with

respect to time° Thus, integration of Equation (7.1) yields

(7.1)

(7.2)

(7°3)

If we substitute Equations (7ol) and (7.3) into Equation (7°3)

and integrate from the bubble radius to infinity, we obtain

(7.4)
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i

The stress components for the velocity field given by Equation

(7.3) are [135], (for the liquid outside the bubble)

= -i c+ j÷ AR

Within the bubble,

(7=5)

(7.6)

where Pv is the partial pressure of the vapor and pg is the

partial pressure of an inert gas.

The stress component o must experience a jump of magnituderr

2_
at the bubble wall. Comparing the first of Equations (7.5)R

with the first of Equations (7.6), we find that the pressure just

outside the bubble wall is given by

(7°7)

If we substitute Equation (7.7) into Equation (7.4) we obtain

an ordinary differential equation for the bubble radius as a function

of the pressures inside and outside the bubble. This equation is:

(7.8)
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7°3 Discussion of Equation (7.8)

Equation (7.8) is similar to the well-known Rayleigh [98] equation°

Several solutions to Equation (7°8) exists under a variety of assump-

tionso However, most of the existing solutions are applicable only to

bubbles of fairly large size. Weare interested in bubbles from the

time they are formed until they becomevisible. Therefore, we must

examine each term in Equation (7.8) to determine its influence on the

bubble growth within this time interval. Listed below is a discussion

of each term in Equation (7.8).

(a) The inertia and surface tension terms are significant

during the initial expansion of the original bubble

nucleus [109]°

(b) The viscous term is significant during the early stages

of growth in a highly viscous liquid.

(c) The vapor pressure term usually decreases as the bubble

radius increases° Since the growth is fairly fast, this

term might be assumedto remain constant and equal to its

value at time, t, equal to zero.

(d) The inert gas term may be neglected if the liquid is

nearly free of dissolved gases.

(e) The liquid pressure term will decrease with time and

will dependupon the test section shape and stream

conditions at the inlet to the test section°

Each term in Equation (7_8) appears to be important during the

early stages of growth° Thus, we are unable to linearize Equation

(7°8).
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7.4 Previous Solutions for Equation (7.8)

The influence of time-dependent factors on bubble growth has

been investigated by Noltingk and Neppiras [62], [63], Parkin [72],

and others. Noltingk and Neppiras solved Equation (7.8) on a

differential analyzer for the growth of an air bubble in a fluctuating

pressure, p(t), field. They neglected the viscosity term in Equation

(7.8) and assumedthe inert gas within the bubble to undergo an

isothermal expansion. The pressure outside the bubble was repre-

sented as one cycle of a negative sign function. Noltingk and

Neppiras found by trial that wide variations in boundary values of

radial velocity, R, (at R = Ro) produced insignificant changes

in the contour of the R-t curves.

In another investigation of the effect of time, based on

Equation (7.8), Parkin [72] defined the onset of cavitation to be

the bubble growth to a particular radius of 0.i0 Cmo Parkin neglected

the viscosity term in Equation (7°8) and assumedthe inert gas within

the bubble to undergo an isothermal expansion. He also assumedthe

surface tension to vary linearly from zero to its value of _. This

change in surface tension was assumedto take place during the early

stages of bubble growth° The pressure, p, within the liquid was

represented by a parabolic pressure function.

There has been no attempt to correlate solutions of Equation

(7.8) to liquids flowing through conduits. Thus, we believe that

Equation (7°8) could yield someuseful results in predicting the

effect of pressure distribution on the onset of cavitation.
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7o5

7.6

Solution to Equation (7.8)

Before a solution to Equation (7.8) can be obtained it will be

necessary to determine the boundary conditions. This will have to

be done by trial because no exact method exists for determining

the initial bubble radius.

The initial radial velocity, R , will be zero at some
o

particular value of the external pressure. This value of the

external pressure may be determined by

Ro

Thus, the initial bubble radius, R
O'

Pgo can be estimated by Henry's Law,

is the only unknown since

Pgo = HC , and pv ° is

approximately equal to the liquid vapor pressure.

The major problem is that of determining the correct value

for R . Parkin [72] assumed a value of 10 -3 cm for R . The
o o

correct value or values for R
o

selecting R so that R and
o

bubble becomes visible°

may be determined by trial by

R can be satisfied once the

Pressure Inside Bubble

The pressure within a small bubble will undergo an expansion

as the bubble grows from an invisible size to a visible size. This

expansion will be neither isentropic nor isothermal. However, if

we solve Equation (7°8) first by assuming the gaseous mixture to

undergo an isentropic expansion and second by assuming the expansion

to be isothermal, then the actual expansion should yield results

(7°9)
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which are between these two assumedprocesses. The actual expansion

will probably follow a polytropic process. However, the polytropic

exponent is unknownand must be determined by experimental methods.
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CHAPTERVIII

Theoretical and Experimental Investigations
of Bubble Dynamics

8.1 Introduction

The purpose of this chapter is to present a complete review of

what has been done in the bubble dynamics investigation and to acquaint

the reader with the final objectives of this investigation.

First the analytical work already done is considered.

mental methods for verifying the theoretical work are given.

the possibilities of future investigations are reviewed°

Then experi-

Finally,

8_2 Analytical Solutions of Bubble Dynamics Problems

A. Bubble growth in a superheated liquid has been considered in

references [99], [100], [i01], [102], [103], [104], [105], [106], [107],

[108], [109], [ii0], and [iii]o For the case of initially uniform super-

heat in the liquid and with the assumptions of Section 5.2, the analytical

solutions for the asymptotic growth rate of a vapor bubble has the form:

= A (8° i)

The coefficient, A, is a function of the physical properties of the

system and also contains a numerical constant depending upon the refer-

ence under consideration°

The analytical approaches of Forster-Zuber, Plesset-Zwick, and

Scriven are compared in Figure 8.1. This data was taken for a vapor
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bubble in liquid nitrogen superheated by 3°F at atmospheric pressure.

For these three solutions the equations are:

Forster-Zuber

Plesset-Zwick

Scr iven

(8.2)

(8.3)

where _ was solved by numerical integration from the equation:

?,,L_.__vv

and _ = i - pv/PL o For the properties listed below _ was found

to be 3.4.

Properties Source

TL = 142.255 ° R Ref

TV : 139.255 ° R Ref

PL = 14.7 psia Ref

CpL = .496 Btu/ib ° R Ref

CVL = .258 Btu/ib ° R Ref

PL = 50.506 Ib/ft 3 Ref

136

136

136

137

138

136
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Properties Sources

PV = .2875 ib/ft 3 Ref. 136
o

KCL= 2.2025 x 10-5 Btu/ft-sec R Ref. 137

The analytical approach for this investigation will be Equation

(8.1) and the value of A will be one of the primary results to be

obtained by experiment.

For the present problem the analytical solution to the bubble

growth is not considered in the range where the bubble can not be

studied adequately from photographs. Absolute verification of the

analytical results in the early growth range is non-existent at pre-

sent. The practicability of study in this range has not been con-

sidered here.

B. Bubble collapse in a subcooled liquid was considered in

references: [I01], [116], [108], [117], [118], [119]. Bubble collapse

will be considered in two parts:

i. Whenthe subcooling of the liquid is more than 35° F the

collapse will be considered to be controlled entirely by

inertia forces and heat transfer effects will be neglected.

The Rayleigh equation, (5.23), becomesvalid.

•
The arbitrary 35 ° F subcooling must be verified and this is

one aim of the experimental work.

2. For subcooling less than 35 ° F two methods of predicting

collapse are available. Since work in cryogenics is con-

cerned primarily with the case where a liquid is usually
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only subcooled by a few degrees, it seemsthat a review of

these two analytical approaches is necessary.

Plesset and Zwick [i01] obtained the system of equations shown

below for the situation in bubble collapse where both heat transfer

and inertia must be considered.

(8.6)

(8.7)

Boundary conditions:

where

, 16(o)= o , e(o)=o (8.8)

C

?- CelRo), R = Radius at start of
O

collapse

The system of Equations (8.6), (8.7), and (8°8) was solved by

a numerical integration technique in Appendix II of this reference

El01].

Florschuecz and Chao [116] obtained the same equations but put

them in an altered form° Their equations may also be solved by nu-

merical integration methods.
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These are the systems of equations necessary to treat the ana-

lytical approach to collapse in slightly subcooled collapse.

C. Bubble growth in a nonuniform temperature field was con-

sidered in references [106], [120], [122], [123], [121].

Zuber [106] offers the simplest correlation of data with the

equation:

qb is the heat transferred from the surface to the liquid. This

equation is convenient because of its simplicity. Physically qb

is a measureof how nonuniform the temperature field maybe.

If it is possible to get a good correlation of data with Equation

(8.9), it maybe necessary to assumea linear temperature variation

from the heating surface of the form:

_= (_'_ll- rr_)( '_- -_ O..DE_) + _1

are spherical coordinates and b is the distance

= (See Griffith [121]) Then usefrom the surface where T L T . .

this along with the equations:

where r and

and
•r%

(8.9)

(8o10)

(8.11)

(8o12)
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8.3

These equations can also be solved by a numerical integration techni-

que.

Experimental Approach to Bubble Dynamics

The observation of bubble growth and collapse in non-cryogenic

fluids has indicated that the preceeding analytical approaches can

give adequate predictions of bubble dynamics. However, experimental

verification with cryogenic fluids has not yet been carried out. To

furnish information on cryogenic fluids, the bubble chamber of Figure

8.2 was designed for use with liquid nitrogen.

It has been found that plexiglas is very sensitive to clamping

stresses at liquid nitrogen temperatures and consequently no adequate

seal has been obtained with this material. The windows on the inner

chamber are madeof pyrex glass 7/16 inch thick and sealed to an invar

metal holder with Armstrong epoxy cement. The CryoVac Companyof Co-

lumbus, Ohio indicated that this arrangement gave satisfactory sealing

properties.

The vacuumjacket around the inner chamber serves two purposes.

It maintains a low level of heat transfer to the inner chamberand

prevents frost from forming on the windows.

There are three ways in which bubbles can be generated in the

viewing area: i. vapor can be forced in through Tube A of Figure

8.2; 2. current can be passed through the heater; and 3. Chamber

A can be evacuated and the valve between it and the inner chamber

can be openedrapidly and cavitation would result. The first two

methods will be used for a source of bubbles to verify the analytical

results of Section 8.2.
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8.4

The subcooled liquid will be obtained by rapidly increasing

the pressure in the inner chamber; the superheated liquid will be

obtained by rapidly decreasing the pressure in the inner chamber;

and a nonuniform temperature field will result when the heater is

activated.

A photographic record of the bubble dynamics will be made in

all combinations of temperature fields. A high-speed camera that

takes 2,000 to i0,000 pictures per secondwill be used. The other

data to be taken includes pressure above the liquid, temperature of

the liquid away from the bubble formation, and the temperature of

the heater.

Experimental Instrumentation and Calibration

A. Pressure Measurement Static pressure in the inner chamber

will be determined by measuring the pressure in ChamberA of Figure

8.1. The inner chamber is connected to ChamberA by a small stain-

less steel tube. ChamberA will be filled with nitrogen vapor

which has essentially zero velocity. A static pressure tap in

ChamberA is attached to a mercury manometer. Static pressures

measured in ChamberA will be approximately 1/2 inch of liquid nitro-

gen less than the static pressure at the liquid-vapor interface in

the bubble chamber. The manometerat room temperature in coordination

with a barometer can be used as a standard for static pressure measure-

ment.

B. Temperature Measurement - The temperature away from the point

of bubble formation and the temperature of the heater are to be
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measuredby use of copper-constantan thermocouples. Two thermocouples

will be madeby cutting one long thermocouple wire and welding both

at the cut. The composition of the thermocouples should be the same

at this point. These two thermocouples will be placed in the liquid

nitrogen in the samehorizontal plane from the floor to measurethe

temperature at a distance from the bubble. Oneadditional thermocouple

will be located in the heater.

All thermocouples will use a reference temperature at the ice

point. Reference [ 139], page 159, states that the ice point is

reproducible enough to be used as a standard. Reference [139], page

206, gives a plot of somecalibration work for this arrangement. Figure

(8.3) is a reproduction of the calibration work done.

Thermocouple tables for copper-constantan in the temperature range

of interest are given in reference [139], page 211, reference [140],

and reference [141].

The thermocouple output will be measuredwith a Rubicon type B

bridge_ The temperature should reach steady state after cool-down

and remain fairly stable. Onemicrovolt accuracies are expected.

It can be seen that the thermocouple output for the range of

-183° C to -200° C for any single thermocouple can be calibrated

with a high degree of accuracy by knowing two temperatures in this

range (see Figure 8°3). The thermodynamic properties of nitrogen

[136] can be used along with the corrected static pressure in the

bubble chamberand boiling nitrogen to determine these temperatures°

By adjusting the pressure in the bubble chamberand letting the

nitrogen boil, _ is possible to find the temperature of the liquid.
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The corresponding voltage output of all three thermocouples will be

read for various temperatures and a correction curve for each thermo-

couple will be drawn in this pressure range.

Before each test run, the thermocouples will be calibrated at

atmospheric pressure to insure reproducibility. The expected accuracy

of temperature measurementwill be determined from this reproducibility.

The technique of Scott [137], page 125, will be used to insure that the

voltage measurementis reliable.

C. Length Measurement- The bubble radius must be measuredfrom

a photograph. The lighting will be such that liquid will photograph

black and bubbles will be white. There is a vertical plane in which

the bubbles are to be studied and the camerawill be focused for that

object plane. A polished spherical glass bead will be placed in the

bubble chambernear the point of bubble formation and in the object

plane. With the nitrogen in the chamber, a filar measuring micro-

scope will be used to determine this size. Each frame taken by the

camerawill have this known length on it.

D. Time Measurement- The high speed camera to be used has a

timing mark generator which marks the film one thousand times a

second. This device is simply an oscillator in the camera timing

light circuit. The timing marks will then be one millisecond apart.

Calibration for the internal oscillator can be accomplished by

comparing the 1,000 cylces per second signal from the National Bureau

of Standards Radio Station WWVto the os¢illa_or on an oscilloscope°

The internal oscillator will be adjusted until a one-to-one Lissajous

pattern is obtained.
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8.5 Additional Experimental Studies

With the addition of a transient pressure transducer experimental

data can be taken in three other areas°

A° The equation governing bubble growth and collapse,

20-

canbe solved for very fast transient pressures by assuming that Pv(Tv)

is almost a constant° The external pressure, PLy' (measured with the

transient pressure transducer) will be put into a computer in tabular

form and the equation can be solved by numerical integration° This

will be another check on the validity of Equation (8.13).

For slowly varying transient pressures, heat transfer must be

considered and Pv(Tv) can no longer be assumed constant°

B. Pressure transients in the liquid can be generated using a

piston-cylinder arrangement in the place of Chamber A (Figure 8°2).

By selecting the proper driving linkage for the piston, a rapid

decrease in pressure followed by a dwell at the minimum pressure

and then a gradual increase in pressure can be produced° This is

the type of pressure transient experienced by a liquid flowing through

a venturi. The bubble observation chamber with a piston-cylinder could

be used to compare cavitation produced in the bubble chamber to cavitation

produced in a flowing stream° This arrangement could be used to determine

the effect of fluid velocity and fluid acceleration on cavitation_

The elimination of fluid flow removes the effect of fluid viscosity

from consideration° %here is still one viscosity effect if it is not

neglected in Equation (8.13).
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(8.14)

8.6

In cavitation studies for a flowing liquid Equation (8.14) is used.

It appears that the difference in pressure drop required for

cavitation between the flow and non-flow liquids is a function of

the fluid velocity in the flowing system. If this is true, the

prediction of when cavitation will occur can be made for any system

by generating the transient pressure of that system in a static

bubble chamber and applying the velocity function. This is the

ultimate goal of the present study. It is hoped that the hydro-

dynamic tunnel and the bubble observation chamber can be used con-

currently in this endeavor.

C. This experimental apparatus including a transient pressure

transducer could be placed on a vibrating platform and the effect

of vibration upon cavitation could be studied with a high-speed

camera.

Summary

The experimental arrangement described in this chapter will

be used to verify the analytical solutions to the problems of growth

in a superheated liquid, collapse in a subcooled liquid, and growth

in a nonuniform temperature field.

It will also be used to study the effect of transient pressure

on bubble dynamics° There is a possibility of comparing the transient

pressure required for cavitation in a non-flow system to that in a

flowing system.
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The study of the effect of vibration upon cavitation can also

be accomplished with the bubble observation chamber.
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9.1

9.2

CHAPTERIX

Experimental Studies on Single-Phase Conduit Models

Introduction

In the following material a description is given of the experi-

mental work which has been conducted in association with the single

phase part of the study. The material includes a discussion of

experimental apparatus which has been constructed°

Description of Apparatus

For the purpose of implementation of the experimental studies,

the following equipment has been constructed.

Oscillating Piston and Drive Unit

The oscillating piston and drive unit (Figure 9.1 and 9.2) was

constructed to drive the two basic sets of experimental apparatus

detailed below. The piston is driven by a hydraulic motor capable

of speeds from nearly zero to 4000 rpmo The power supply (Figure 9°3)

consists of a gear pump directly coupled to an electric motor and

employs a flow divider valve for control of oscillator speed.

Simple Hydraulic Line Pulsation Unit

The first experimental setup (Figure 9.4) utilizes the drive

unit to impose a true sinusoidal pressure transient on the fluid

contained in an eighty foot, one inch o.do, stainless steel line

which terminated in the constant pressure reservoir (Figure 9.5).
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A i000 pound cement pad was used to provide a firm base for the

driver unit. Instrumentation was provided to read out driver

frequency, pressure at the pistonface, and reservoir pressure.

The Liquid Filled VibratinE Tube Unit I

The basic oscillating driver unit has been constructed so

that it may be mounted in a vertical as well as a horizontal

position. The vibrating tube unit I employed the driver, mounted

in a vertical position with the base of a plexiglas tube attached

as shown in Figure 9.6. This unit is intended for use in determining

system vibration effects both for single-phase and two-phase fluid

studies. Instrumentation is available to measure driver frequency

and system fluid pressure at various points along the tube.

Orifice Stud_ Experimental Apparatus

In order to investigate experimentally the transmission pro-

perties of orifices in fluid conduit systems and to compare acoustic

data in the literature with hydraulic data, the test equipment shown

in Figure 9.7 was constructed_

9.3 Experimental Results

The following is a description of the tests which have been

performed using the test equipment detailed above.

Verification of Two-Dimensional Conduit Model

The first series of tests was conducted (using the hydraulic

line pulsation unit, Figure 9°4) in order to verify the two-

dimensional viscous model represented by the transfer relations

(Equations 2.23 and 2°24) and using the propagation factor given
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in Equation (6°45)° Tests were conducted first with water as the

operating fluid° The frequency of the driver unit was varied from

400 rpm to 3000 rpm and the pressure disturbance at the driver end

was recorded° The pressure recording equipment consisted of a pressure

transducer with both single pin recorded and scope output. The recorder

was used in the low rpm ranges to record the traces and a camera fitted

to the scope recorded the traces in the higher rpm ranges. The system

static pressure was maintained at 500 psi, thus allowing up to i000

psi peak-to-peak pressure variations° Figure 9°8 shows an experimental

and theoretical plot for an experimental run made with a driver amplitude

of °025 inches° The experimental data follows the theoretical predictions

well in the region of the first resonant point, but there appears to be

some discrepancy on the second resonant point. This difference stems

from the fact that there is about a 2 per cent difference in the resonant

frequencies between the experimental and theoretical data. This is a

rather small experimental error and could easily be accounted for in

the calculation of the effective speed of sound of the fluid. Since

the tube walls are not perfectly rigid, Equation (2°43) was used in

calculating the effective speed of sound. The values of K, Co, and

Et used in the calculations were obtained from a handbook and there is

no assurance of their accuracy.

It is interesting to note that a common practice among writers

reporting upon conduit studies is to correct their analytical value

of the speed of sound to match their experimental data. This is

mainly due to the lack of knowledge concerning accurate values of
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K and c for many fluids. These constants are difficult to determine
o

and may vary drastically depending on the type of fluid, its additives,

and other fluid parameters°

Two phenomena which occurred during the tests are worthy of note

at this point. The first was that frequency oscillations occurred in

the hydraulic drive system when the system is operated very close to

a resonant peak. This is apparently due to the great change in power

per change of frequency near these points. Because of this, the re-

sonant points must be approached very slowly in order to not induce

this oscillation. It was found to be impossible to get the system

to operate exactly at resonance. The other phenomena was the occurrence

of a superimposed sine wave upon the main disturbance at certain fre-

quencies. The exact cause of this superimposed disturbance has not

yet been determined, but it is suspected that it may be the natural

frequencies of the driver. Figure 9o 9 shows typical pressure traces

when this superimposed disturbance is not noticeably present. Figure

9o i0_ on the other hand, shows the main sine wave plus the superimposed

wave. It was rather hard to determine the amplitude of the main dis-

turbance from these traces so the peak-to-peak values were used. This

gives values which are too high as may be seen from the points at 1200

and 2000 in Figure 9°8. Very similar results were obtained using the

same experimental configuration but with a driver amplitude at .050

inches°

Again, using the first experimental setup with MIL-5606 hydraulic

fluid as the media_ a test was made with the °025 inch driver amplitude.

All other conditions were/similar to the previous tests° Figure 9oll
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shows the pressure amplitude vs. driver frequency plot for the test.

The plot of theoretical values shows good agreement with the experi-

mental data.

Orifice Stud_

A series of six tests were performed to determine the resistance

of various orifices situated in a fluid line as shown in Figure 9.7.

For the tests, the reservoir was pressurized to prevent cavitation

and the driver unit was utilized to impose a true sinusoidal pressure

transient on the fluid° Water at room temperature was used in the tests

and was assumed to be incompressible over the twenty-inch length between

the piston face and the orifice manifold.

Instrumentation (Figure 9.12) was provided to measure rpm of the

driver, differential pressure across the orifice, and instantaneous

flow volume.

C^R_
- D£J

I PR E" AIv/ P. H RE.CORO£R I

Figure 9o12 Instrumentation for Orifice Study
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In addition to the data taken under pulsating conditions, steady

flow differential pressure data was also taken so that a comparison

could be madebetween the steady flow resistance and nonsteady re-

sistance. The resistance values for each case were calculated by

dividing the differential pressure amplitude by the fluid velocity

amplitude.

Plots of velocity resistance versus velocity are presented in

Figures (9.13), (9.14), and (9.15) for the 0.i00 inch flat, 0.2015

inch flat, and 0.2015 inch sharp edged orifices, respectively. Due

to equipment limitations, the linear region of resistance is not well

defined for this data; however, there is a marked discontinuity at the

beginning of the nonlinear region. Figure (9.16) showsa resistance

versus velocity plot of the data reported by Thurston and Martin [34].

Weobserve that the nonlinear region begins in the range of

v = 60 to i00 in/sec for the 0.i inch orifice, 15-17 in/sec for the

.2015 inch flat orifice and 18-20 in/sec for the .2015 inch sharp

edged orifice. Thurston's data becomesnonlinear at a value of 0.9,

I, and 13 in/sec for the three orifices which he tested. The above

information leads us to the conclusion that there exists a character-

istic velocity at which the nonlinear region begins which is most

critically dependent on orifice size. In this respect, the velocity

impedanceis the most convenient impedancedimension to study°

A comparison of steady flow impedance (that is resistance) with

that for purely pulsating flow is also madein Figure (9o13), (9o14)

and (9.15)o In Figure (9o13) where the nonlinear region falls in

the velocity range of i0 to 100 in/sec, it can be seen that the transient
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flow resistance is very closely approximated by steady flow resistance.

In Figures (9o14) and (9.15), however, there is a correction factor

needed to make the same assumption since the velocity range of the

nonlinear region falls between i and i0 in/sec. The pulsating flow

resistance is plotted against peak velocity.

From an analysis of the experiment results we have found that

there are four distinct cases which may occur.

Case I No steady flow component - small perturbations

For Case I we have no net steady flow component and we

assume that the pressure and velocity perturbations are small.

The experimental studies have shown that for this case the un-

steady pressure drop, AP, and the unsteady velocity are related

by the relation

where R is a linear resistance and I a linear inertance.

Generally, in the linear region, the inertance is very much

smaller than the resistance for practical frequency ranges.

Case II - No steady flow component - large perturbations

For this case we assume that the pressure and velocity

fluctuations are large enough so that we are in the nonlinear

region of the resistance and inertance. It has been shown

that in this region the relationship between the velocity

and pressure drop is given approximately by the steady flow

orifice equation (neglecting the inertance) or

A_--- _i] -_ (9.1)
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where K is adjusted to agree with experimental data.

Case III - Steady flow component - small perturbations

If the velocity and pressure fluctuations are small

then we may use the linearized relation given by (2.53)°

Case IV - Steady flow component - large perturbations

For this case Equation (9.1) must also be used.
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10.2

CHAPTER X

Experimental Study of the Formation of Two-Phase Flow

As Caused, by Pressure Drop

Introduction

Considerable progress has been made in the development of a

mathematical model which will describe the flow of a single-phase

fluid through conduits (see Chapter Vl). The development of a

mathematical model which will describe single- and two-phase flow

has been limited because of insufficient information about the

cavitation properties of various liquids while flowing through

different pressure distributions (see Chapter IV). A small hydro-

dynamic tunnel is being constructed so that we can determine the

conditions under which profuse and limited cavitation starts and

the conditions which will cause these cavities to collapse.

This chapter will be limited to a discussion of the experi-

mental investigations to be performed with the hydrodynamic tunnel

and the tunnel design. This is necessary because the hydrodynamic

tunnel is not in operation.

Experimental Investigations

The hydrodynamic tunnel will serve as a useful apparatus in

the study of the formation of two-phase single-component flow.

This tunnel is designed so that additional investigations can be

performed without any major change in the present design.
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10.3

The experimental investigations to be performed with the hydro-

dynamic tunnel are:

I. Determine the effect of acceleration or pressure distribution

on cavitation relaxation time for limited- and profuse-

cavitation occurring in venturi and elbow test sections.

2. Determine the conditions under which these cavities will

collapse.

3. Determine the effect of flow patterns on items I and 2.

4. Determine the validity of the experimental work performed

by Lehman and Young [ 57 ] (see Figure 4_17).

5. Determine the boundary conditions for the theoretical

investigation.

These investigations will be performed using several different liquids°

This will be necessary in order to determine the effect of fluid pro-

perties such as viscosity, surface tension, etc.

The items listed in the preceeding paragraph constitute the

first phase of an experimental program designed to study the effects

of vibration on the cavitation properties of cryogenic fluids flowing

through various geometries° The ultimate goal of this test program

is to provide information for use by the designer of cryogenic equip-

ment. This may be accomplished by undertaking a systematic experimental

program with dynamic (flow) and static (nonflow) systems.

Discussion of Tunnel Design

The facility to be used in the study of bubble formation and

collapse, for flowing fluids, is a closed-return hydrodynamic tunnel

designed to handle cryogenic as well as ordinary liquids. The facility
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is shown schematically in Figure i0.i. The tunnel is designed to

accommodate 18-inch long venturi test sections and elbow test sections

with various R/r ratios. It will be fabricated of 304 stainless
O

steel except for the heat exchanger and test sections and has a total

liquid capacity of about 5 U. S. gallons. The venturi test sections

will be operated in a vertical position to help simulate actual flow

patterns within a missile. A variable-speed pump-drive unit, which

is capable of providing operational flow velocities from 15 to i00

feet per second in the test sections, will be used. The Centrifugal

pump is a commercially available unit designed to handle liquid nitro-

gen. In order to reduce tunnel losses, only one test section will be

installed at any time. Corner-turning vanes and flow straighteners

will be used when uniform, steady, irrotational flow is desired at

the test section.

The tunnel facility is designed to operate over a pressure range

from 0 to 250 psia and a temperature range from 130 to -320 F.

High pressure nitrogen gas will be used as the tunnel pressurizing

medium° Tunnel pressures less than atmospheric will be obtained

by means of a vacuum system connected to the pressurizing line.

The heat exchanger consists of a double-pipe arrangement. The

inner pipe will be fabricated of copper to provide a good heat trans-

fer between the tunnel and the cooling or heating liquids. Provision

has been made so that fins can be installed on the copper pipe if

they are needed. The outer tube of the heat exchanger will be made

of 304 stainless steel. An O-Ring seal will be used at the upper end

of the heat exchanger to eliminate the formation of thermal stresses.

194



A float type liquid level control valve will be used to control the

coolant (liquid nitrogen) level when nitrogen is being studied in

the tunnel.

The tunnel will be insulated with cork or some commercially

available material which has a thermal conductivity of about 0.01

Btu/hr ft. F. This will insure almost isothermal flow except through

the pump and heat exchanger.

The free gas present in the tunnel will be controlled with a

resorber. There is some question, however, of the optimum design

of a resorber; if they are too "efficient," the amount of free

gas, or nuclei, may be insufficient for purposes of modeling in-

ception. Therefore, the tunnel will be operated without a resorber

during initial testing.
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APPENDIX B

B. Summary of Vector Notation

Given below is a list defining some of the vector notation used in

Chapter II; also given are some of the vector identities. See also

reference 4.

i. _a J and _ are the unit vectors in the _, y, and z

directions respectively in a rectangular coordinate system (see Fig.

B.I.).

-2

_I _ and _ are the unit vectors in the r, 8 and z directions

respectively in a cylindrical coordinate system (see Fig. I.i).

2. 7 denotes the vector operator del and is given by

in rectangular coordinates.

3. 7 _ denotes the gradient of the scalar _ and is given by

in rectangular coordinates and by

(B.I)

(B.2)
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in cylindrical coordinate@.

4. 9 ._denotes the divergence of "_. In rectangular coordinates

V'_= a___÷ +
(B.4)

and in cylindrical coordinates

(B.5)

5. 7 '7 = _ denotes the Laplacian operator. The form of this

operator depends not only on the coordinate system but also upon the

In rectangular coordinates _is alwaysvariable being operated upon.

given by

D _

_-_ + a__+ ae_

In cylindri_ _oordinates we have, if _ is a scalar quantity,

or if we are operating on a vector such as_, then

(B. 6)

(B.7)

(B.8)

where

+ D_zr_ (B.9)
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and

,

rectangular coordinates by

7 x_denotes the curl of the vector't_and is defined for

,

_. ._ IK

A list of important vector identities is given below:

a. v x (v_) _o

b. 7. (7 x _) = 0

c. 7x (7x v) = v (v._ - v'v.

(B.IO)

(B.ll)

(B. 12)
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APPENDIX C

C. Method of Separation of Variables

Let us review the method of separation of variables to see how Eqs.

(2.24) and (2.25) are obtained from (2.22) and (2.23). The equations

to be solved are

and

(2.22)

(2.23)

Both equations are linear partial differential equations, a class of equations

Consideringto which the separation of variables method may be applied.

first Eq. (2.23) we assume a solution of the form

= _ • (c.i)

where _r is a function of r only and _z is a function of z only.

of (C.I) into (2.23) gives

-, e_,_ _d__ _ _. _s__.V_ --'_+ - -- ._ _

Dividing both sides of (C.2) by _ yields

-- + _"ae- _3 _ a__.

Eq. (C.3) may be rewritten as

Substitution

(c.3)

(c.4)
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Since the equality defined by Eq. (C.4) must remain true regardless of the

values of r and z, thus each side of the equation must be constant or

equal to (-0_) where _ denotes the separation constant. We may now

write

p,
(c.5)

and

_v_ _ -

A general solution of (C.5) is

(c.6)

-_ = Q __'_.+ C_.e-'_ (c.7)

and a physically consistent solution to (C.6) is

(c.8)

From Eqs. (C.l), (C.7) and (C.8) we have

or, keeping in mind that _ has a positive and a negative value, we may

write for convenience

"_= A _4 e _

(C.9)

(c. to)

The solution of Eq. (2.22) will follow in the manner as above except that

for this ca_e _ is of a different form so that the solution contains
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the zero-order Bessel function, thus

In Eq. (C.8), Jt(Kr) represents the first-order Bessel function of the

first kind and Jo (_r) from (C. ll) is the zero-order Bessel function

of the first kind. (See Fig. 2.2).

(c.zz)
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